Upcoming AMD UEFI Update Will Improve Ryzen Boost Clocks


This site may earn affiliate commissions from the links on this page. Terms of use.

One ongoing question reviewers have been digging into for the past few weeks is the expected behavior of AMD 7nm Ryzen CPUs at high boost clock versus the actual, measured behavior. AMD promised to update the user community today, September 10, as to the expected behavior of its CPUs and what changes would be incorporated in upcoming UEFI revisions.

To briefly recap: Reports in late July showed that some AMD CPUsSEEAMAZON_ET_135 See Amazon ET commerce were only reaching top boost clock frequency on a single CPU core. Last week, overclocker Der8aurer reported the results of a user survey showing that only some AMD 7nm Ryzen CPUs were hitting their full boost clocks (the exact percentage varies by CPU model). Late last week, Paul Alcorn of Tom’s Hardware published an extensive test of how different AMD AGESA versions and UEFI releases from motherboard impacted motherboard clocking. AGESA is the AMD Generic Encapsulated Software Architecture — the procedure library used to initialize the CPU and various components. Motherboard vendors use the AGESA as a template for creating UEFI versions.

What THG found was that different UEFI versions and AGESA releases have shown subtly different clocking results. Later releases have hit slightly lower boost clocks compared with the earlier versions that were used for reviews. At the same time, however, these later versions have also frequently held their boost clocks for longer before down-throttling the CPU.

There’s also evidence that the throttle temperatures have been subtly adjusted, from 80C initially down to 75 before creeping back upwards to 77. These changes would not necessarily impact performance — the CPU is boosting a bit lower, but also boosting longer — but it wasn’t clear what, exactly, AMD was trying to accomplish. During its IFA presentation last week, Intel argued that these subtle variations were evidence that AMD was trying to deal with a potentially significant reliability issue with its processors. THG was unwilling to sign on to that explanation without additional information.

Ryzen-Master-AMD

AMD’s Ryzen Master tweaking and monitoring utility

While all of this was unfolding, AMD notified us that it would make an announcement on September 10 concerning a new AGESA update.

AMD’s Update

The text that follows is directly from AMD and concerns the improvements that will be baked into updated UEFIs from various motherboard manufacturers. I normally don’t quote from a blog post this extensively, but I think it’s important to present the exact text of what AMD is saying.

[O]ur analysis indicates that the processor boost algorithm was affected by an issue that could cause target frequencies to be lower than expected. This has been resolved. We’ve also been exploring other opportunities to optimize performance, which can further enhance the frequency. These changes are now being implemented in flashable BIOSes from our motherboard partners. Across the stack of 3rd Gen Ryzen Processors, our internal testing shows that these changes can add approximately 25-50MHz to the current boost frequencies under various workloads.

Our estimation of the benefit is broadly based on workloads like PCMark 10 and Kraken JavaScript Benchmark. The actual improvement may be lower or higher depending on the workload, system configuration, and thermal/cooling solution implemented in the PC. We used the following test system in our analysis:

AMD Reference Motherboard (AGESA 1003ABBA beta BIOS)
2x8GB DDR4-3600C16
AMD Wraith Prism and Noctua NH-D15S coolers
Windows 10 May 2019 Update
22°C ambient test lab
Streacom BC1 Open Benchtable
AMD Chipset Driver 1.8.19.xxx
AMD Ryzen Balanced power plan
BIOS defaults (except memory OC)
These improvements will be available in flashable BIOSes starting in about two to three weeks’ time, depending on the testing and implementation schedule of your motherboard manufacturer.

Going forward, it’s important to understand how our boost technology operates. Our processors perform intelligent real-time analysis of the CPU temperature, motherboard voltage regulator current (amps), socket power (watts), loaded cores, and workload intensity to maximize performance from millisecond to millisecond. Ensuring your system has adequate thermal paste; reliable system cooling; the latest motherboard BIOS; reliable BIOS settings/configuration; the latest AMD chipset driver; and the latest operating system can enhance your experience.

Following the installation of the latest BIOS update, a consumer running a bursty, single threaded application on a PC with the latest software updates and adequate voltage and thermal headroom should see the maximum boost frequency of their processor. PCMark 10 is a good proxy for a user to test the maximum boost frequency of the processor in their system. It is expected that if users run a workload like Cinebench, which runs for an extended period of time, the operating frequencies may be less than the maximum throughout the run.

In addition, we do want to address recent questions about reliability. We perform extensive engineering analysis to develop reliability models and to model the lifetime of our processors before entering mass production. While AGESA 1003AB contained changes to improve system stability and performance for users, changes were not made for product longevity reasons. We do not expect that the improvements that have been made in boost frequency for AGESA 1003ABBA will have any impact on the lifetime of your Ryzen processor. (Emphasis added).

Separately from this, AMD also gave information on firmware changes implemented in AGESA 1003ABBA that are intended to reduce the CPU’s operating voltage by filtering out voltage/frequency boost requests from lightweight applications. The 1003ABBA AGESA now contains an activity filter designed to disregard “intermittent OS and application background noise.” This should lower the CPU’s voltage down to 1.2v as opposed to the higher peaks that have been reported.

New Monitoring SDK

Finally, AMD will release a new monitoring SDK that will allow anyone to build a monitoring tool for measuring various facets of Ryzen CPU performance. There will be more than 30 API calls exposed in the new application, including:

Current operating temperature: Reports the average temperature of the CPU cores over a short sample period. By design, this metric filters transient spikes that can skew temperature reporting.
Peak Core(s) Voltage (PCV): Reports the Voltage Identification (VID) requested by the CPU package of the motherboard voltage regulators. This voltage is set to service the needs of the cores under active load but isn’t necessarily the final voltage experienced by all of the CPU cores.
Average Core Voltage (ACV): Reports the average voltages experienced by all processor cores over a short sample period, factoring in active power management, sleep states, VDROOP, and idle time.
EDC (A), TDC (A), PPT (W): The current and power limits for your motherboard VRMs and processor socket.
Peak Speed: The maximum frequency of the fastest core during the sample period.
Effective Frequency: The frequency of the processor cores after factoring in time spent in sleep states (e.g. cc6 core sleep or pc6 package sleep). Example: One processor core is running at 4GHz while awake, but in cc6 core sleep for 50% of the sample period. The effective frequency of this core would be 2GHz. This value can give you a feel for how often the cores are using aggressive power management capabilities that aren’t immediately obvious (e.g. clock or voltage changes).
Various voltages and clocks, including: SoC voltage, DRAM voltage, fabric clock, memory clock, etc.

Ryzen Master has already been updated to give average core voltage values. AMD expects motherboard manufacturers to begin releasing new UEFIs with the 1003ABBA AGESA version incorporated within two weeks. As we wrote last week and despite rumors from Asus employee Shamino, AMD is not portraying these adjustments to clocking behavior as being related to reliability in any way.

As for AMD’s statements about the improved clocks, I want to wait and see how these changes impact behavior on our own test CPUs before drawing any conclusions. I will say that I don’t expect to see overall performance change much — 25-50MHz is only a 0.5 to 1 percent improvement on a 4.2GHz CPU,SEEAMAZON_ET_135 See Amazon ET commerce and we may not even be able to detect a performance shift in a standard benchmark from such a clock change. But we can monitor clock speeds directly and will report back on the impact of these changes.

Now Read:




10 minutes mail – Also known by names like : 10minemail, 10minutemail, 10mins email, mail 10 minutes, 10 minute e-mail, 10min mail, 10minute email or 10 minute temporary email. 10 minute email address is a disposable temporary email that self-destructed after a 10 minutes. https://tempemail.co/– is most advanced throwaway email service that helps you avoid spam and stay safe. Try tempemail and you can view content, post comments or download something

Intel Is Suddenly Very Concerned With ‘Real-World’ Benchmarking


Since at least Computex, Intel has been raising concerns with reviewers about the types of tests we run, which applications reviewers tend to use, and whether those tests are capturing ‘real-world’ performance. Specifically, Intel feels that far too much emphasis is put on tests like Cinebench, while the applications that people actually use are practically ignored.

Let’s get a few things out of the way up-front.

Every company has benchmarks that it prefers and benchmarks that it dislikes. The fact that some tests run better on AMD versus Intel, or on Nvidia versus AMD, is not, in and of itself, evidence that the benchmark has been deliberately designed to favor one company or the other. Companies tend to raise concerns about which benchmarks reviewers are using when they are facing increased competitive pressure in the market. Those of you who think Intel is raising questions about the tests we reviewers collectively use partly because it’s losing in a lot of those tests are not wrong. But just because a company has self-interested reasons to be raising questions doesn’t automatically mean that the company is wrong, either. And since I don’t spend dozens of hours and occasional all-nighters testing hardware to give people a false idea of how it will perform, I’m always willing to revisit my own conclusions.

What follows are my own thoughts on this situation. I don’t claim to speak for any other reviewer other than myself.

Maxon-Cinema4D

One wonders what Maxon thinks of this, given that it was a major Intel partner at SIGGRAPH.

What Does ‘Real-World’ Performance Actually Mean?

Being in favor of real-world hardware benchmarks is one of the least controversial opinions one can hold in computing. I’ve met people who didn’t necessarily care about the difference between synthetic and real-world tests, but I don’t ever recall meeting someone who thought real-world testing was irrelevant. The fact that nearly everyone agrees on this point does not mean everyone agrees on where the lines are between a real-world and a synthetic benchmark. Consider the following scenarios:

  • A developer creates a compute benchmark that tests GPU performance on both AMD and Nvidia hardware. It measures the performance both GPU families should offer in CUDA and OpenCL. Comparisons show that its results map reasonably well to applications in the field.
  • A 3D rendering company creates a standalone version of its application to compare performance across CPUs and/or GPUs. The standalone test accurately captures the basic performance of the (very expensive) 3D rendering suite in a simple, easy-to-use test.
  • A 3D rendering company creates a number of test scenes for benchmarking its full application suite. Each scene focuses on highlighting a specific technique or technology. They are collectively intended to show the performance impact of various features rather than offering a single overall render.
  • A game includes a built-in benchmark test. Instead of replicating an exact scene from in-game, the developers build a demo that tests every aspect of engine performance over a several-minute period. The test can be used to measure the performance of new features in an API like DX11.
  • A game includes a built-in benchmark test. This test is based on a single map or event in-game. It accurately measures performance in that specific map or scenario, but does not include any data on other maps or scenarios.

You’re going to have your own opinion about which of these scenarios (if any) constitute a real-world benchmark, and which do not. Let me ask you a different question — one that I genuinely believe is more important than whether a test is “real-world” or not. Which of these hypothetical benchmarks tells you something useful about the performance of the product being tested?

The answer is: “Potentially, all of them.” Which benchmark I pick is a function of the question that I’m asking. A synthetic or standalone test that functions as a good model for a different application is still accurately modeling performance in that application. It may be a far better model for real-world performance than tests performed in an application that has been heavily optimized for a specific architecture. Even though all of the tests in the optimized app are “real-world” — they reflect real workloads and tasks — the application may itself be an unrepresentative outlier.

All of the scenarios I outlined above have the potential to be good benchmarks, depending on how well they generalize to other applications. Generalization is important in reviewing. In my experience, reviewers generally try to balance applications known to favor one company with apps that run well on everyone’s hardware. Oftentimes, if a vendor-specific feature is enabled in one set of data, reviews will include a second set of data with the same featured disabled, in order to provide a more neutral comparison. Running vendor-specific flags can sometimes harm the ability of the test to speak to a wider audience.

Intel Proposes an Alternate Approach

Up until now, we’ve talked strictly about whether a test is real-world in light of whether the results generalize to other applications. There is, however, another way to frame the topic. Intel surveyed users to see which applications they actually used, then presented us with that data. It looks like this:

Intel-Real-World

The implication here is that by testing the most common applications installed on people’s hardware, we can capture a better, more representative use-case. This feels intuitively true — but the reality is more complicated.

Just because an application is frequently used doesn’t make it an objectively good benchmark. Some applications are not particularly demanding. While there are absolutely scenarios in which measuring Chrome performance could be important, like the low-end notebook space, good reviews of these products already include these types of tests. In the high-end enthusiast context, Chrome is unlikely to be a taxing application. Are there test scenarios that can make it taxing? Yes. But those scenarios don’t reflect the way the application is most commonly used.

The real-world experience of using Chrome on a Ryzen 7 3800XSEEAMAZON_ET_135 See Amazon ET commerce is identical to using it on a Core i9-9900K.SEEAMAZON_ET_135 See Amazon ET commerce Even if this were this not the case, Google makes it difficult to keep a previous version of Chrome available for continued A/B testing. Many people run extensions and adblockers, which have their own impact on performance. Does that mean reviewers shouldn’t test Chrome? Of course it doesn’t. That’s why many laptop reviews absolutely do test Chrome, particularly in the context of browser-based battery life, where Chrome, Firefox, and Edge are known to produce different results. Fit the benchmark to the situation.

There was a time when I spent much more time testing many of the applications on this list than we do now. When I began my career, most benchmark suites focused on office applications and basic 2D graphics tests. I remember when swapping out someone’s GPU could meaningfully improve 2D picture quality and Windows’ UI responsiveness, even without upgrading their monitor. When I wrote for Ars Technica, I wrote comparisons of CPU usage during HD content decoding, because at the time, there were meaningful differences to be found. If you think back to when Atom netbooks debuted, many reviews focused on issues like UI responsiveness with an Nvidia Ion GPU solution and compared it with Intel’s integrated graphics. Why? Because Ion made a noticeable difference to overall UI performance. Reviewers don’t ignore these issues. Publications tend to return to them when meaningful differentiation exists.

I do not pick review benchmarks solely because the application is popular, though popularity may figure into the final decision. The goal, in a general review, is to pick tests that will generalize well to other applications. The fact that a person has Steam or Battle.net installed tells me nothing. Is that person playing Overwatch or WoW Classic? Are they playing Minecraft or No Man’s Sky? Do they choose MMORPGs or FPS-type games, or are they just stalled out in Goat Simulator 2017? Are they actually playing any games at all? I can’t know without more data.

The applications on this list that show meaningful performance differences in common tasks are typically tested already. Publications like Puget Systems regularly publish performance comparisons in the Adobe suite. In some cases, the reason applications aren’t tested more often is that there have been longstanding concerns about the reliability and accuracy of the benchmark suite that most commonly includes them.

I’m always interested in better methods of measuring PC performance. Intel absolutely has a part to play in that process — the company has been helpful on many occasions when it comes to finding ways to highlight new features or troubleshoot issues. But the only way to find meaningful differences in hardware is to find meaningful differences in tests. Again, generally speaking, you’ll see reviewers check laptops for gaps in battery life and power consumption as well as performance. In GPUs, we look for differences in frame time and framerate. Because none of us can run every workload, we look for applications with generalizable results. At ET, I run multiple rendering applications specifically to ensure we aren’t favoring any single vendor or solution. That’s why I test Cinebench, Blender, Maxwell Render, and Corona Render. When it comes to media encoding, Handbrake is virtually everyone’s go-to solution — but we check in both H.264 and H.265 to ensure we capture multiple test scenarios. When tests prove to be inaccurate or insufficient to capture the data I need, I use different tests.

The False Dichotomy

The much-argued difference between “synthetic” and “real-world” benchmarks is a poor framing of the issue. What matters, in the end, is whether the benchmark data presented by the reviewer collectively offers an accurate view of expected device performance. As Rob Williams details at Techgage, Intel has been only too happy to use Maxon’s Cinebench as a benchmark at times when its own CPU cores were dominating performance. In a recent post on Medium, Intel’s Ryan Shrout wrote:

Today at IFA we held an event for attending members of the media and analyst community on a topic that’s very near and dear to our heart — Real World Performance. We’ve been holding these events for a few months now beginning at Computex and then at E3, and we’ve learned a lot along the way. The process has reinforced our opinion on synthetic benchmarks: they provide value if you want a quick and narrow perspective on performance. We still use them internally and know many of you do as well, but the reality is they are increasingly inaccurate in assessing real-world performance for the user, regardless of the product segment in question.

Sounds damning. He follows it up with this slide:

Intel-OEM-Optimization

To demonstrate the supposed inferiority of synthetic tests, Intel shows 14 separate results, 10 of which are drawn from 3DMark and PCMark. Both of these apps are generally considered to be synthetic applications. When the company presents data on its own performance versus ARM, it pulls the same trick again:

Intel-versus-ARM

Why is Intel referring back to synthetic applications in the same blog post in which it specifically calls them out as a poor choice compared with supposedly superior “real-world” tests? Maybe it’s because Intel makes its benchmark choices just like we reviewers do — with an eye towards results that are representative and reproducible, using affordable tests, with good feature sets that don’t crash or fail for unknown reasons after install. Maybe Intel also has trouble keeping up with the sheer flood of software released on an ongoing basis and picks tests to represent its products that it can depend on. Maybe it wants to continue to develop its own synthetic benchmarks like WebXPRT without throwing that entire effort under a bus, even though it’s simultaneously trying to imply that the benchmarks AMD has relied on are inaccurate.

And maybe it’s because the entire synthetic-versus-real-world framing is bad to start with.

Now Read:




10 minutes mail – Also known by names like : 10minemail, 10minutemail, 10mins email, mail 10 minutes, 10 minute e-mail, 10min mail, 10minute email or 10 minute temporary email. 10 minute email address is a disposable temporary email that self-destructed after a 10 minutes. https://tempemail.co/– is most advanced throwaway email service that helps you avoid spam and stay safe. Try tempemail and you can view content, post comments or download something

AMD Sales Are Booming, but High-End Ryzen 3000 CPUs Still in Short Supply


This site may earn affiliate commissions from the links on this page. Terms of use.

After the Ryzen 3000 family debuted on 7nm, German retailer Mindfactory.de released data from its own CPU sales showing that demand for the smaller CPU manufacturer’s products had skyrocketed. That demand continued straight through August, but product shortages may be hampering overall sales.

Once again, Ingebor on Reddit has shared data on CPUSEEAMAZON_ET_135 See Amazon ET commerce sales, CPU revenue share, and average selling prices. The results are once again a major win for AMD, though overall shipments declined this month compared with July.

Mindfactory-Sept

While the absolute number of CPUs fell, AMD held virtually the same market share. Sales of second-generation products continue to be strong, even with third-gen Ryzen in-market. On the AMD side, shipments of the Ryzen 9 3900X fell, as did sales of the Ryzen 7 3700X, and 3800X. The Ryzen 5 3600 substantially expanded its overall market share. Intel shipments appear to have been virtually identical, in terms of which CPU SKUs were selling the best.

Mindfactory-Sept-Revenue

Now we look at the market in terms of revenue. Intel’s share is higher here, thanks to higher selling prices. The Ryzen 9 3900X made a significantly smaller revenue contribution in August, as did the Ryzen 7 3700X. Sometimes the revenue graphs show us a different side of performance compared with sales charts, but this month the two graphs generally line up as expected.

One place where the Ryzen 5 3600’s share gains definitely hit AMD is in terms of its average selling price. In June, AMD’s ASP in Euros was €238.89. In August, it slipped downwards, to €216.04, a decline of 10.5 percent. Intel’s ASPs actually improved slightly, from €296.87 to €308.36, a gain of ~4 percent. This could be read as suggesting that a few buyers saw what AMD had to offer and opted to buy a high-end Core CPUSEEAMAZON_ET_135 See Amazon ET commerce instead. And on Reddit, Ingebor notes that low availability on the Ryzen 9 3900X definitely hit AMD’s revenue share, writing:

Except for the 3900X, all Matisse CPUs where available for most of the time and sold pretty well (not so much the 3800X, which dropped in price sharply towards the end of the month). These shortages can be seen in the revenue drop and a lower average sales price compared to last month.

For most of the month, the 3900X was unavailable with a date of availability constantly pushed out by mindfactory. Seems like the amount of CPUs they got do not suffice to satisfy their backlog of orders. The next date is the 6th of September. Hopefully the next month will finally see some decent availability. Also it remains to be seen when the 3950X will start to sell and whether it will be in better supply.

Ingebor also noted that there’s been no hint of official Intel price cuts, despite rumors that the company might respond to 7nm Ryzen CPUs by enacting them.

The Limits of Retail Analysis

It’s incredibly useful that Mindfactory releases this information, but keep in mind that it represents sales at one company, in one country. We don’t doubt that AMD is seeing sales growth across its 7nm product lines, but the retail channel is a subset of the desktop market, and the desktop market is dwarfed by the laptop market.

Statista-PC-Market-Share

Data from Statista makes the point. Even if we ignore tablets, only about 36.7 percent of the computing market is desktops. Trying to estimate the size of the PC retail channel is difficult; figures I’ve seen in the past suggest it’s 10-20 percent of the space. If true, that would suggest Mindfactory, Newegg, Amazon, and similar companies collectively account for 3.6 to 7.3 percent of the overall PC market. AMD and Intel split this space, with the size of the split depending on the relative competitive standing of each company, hardware availability in the local market, and any country-specific preferences for one vendor versus the other.

This is why you’ll see websites write stories about how AMD is dominating sales at a specific retailer, followed by stories that show a relatively small gain in total market share. It’s not that either story is necessarily wrong; they capture different markets.

Overall, AMD is in a strong competitive position at the moment. Just keep in mind that data sets like this, while valuable and interesting, only capture a small section of the overall space.

Now Read:




10 minutes mail – Also known by names like : 10minemail, 10minutemail, 10mins email, mail 10 minutes, 10 minute e-mail, 10min mail, 10minute email or 10 minute temporary email. 10 minute email address is a disposable temporary email that self-destructed after a 10 minutes. https://tempemail.co/– is most advanced throwaway email service that helps you avoid spam and stay safe. Try tempemail and you can view content, post comments or download something

Survey: Many AMD Ryzen 3000 CPUs Don’t Hit Full Boost Clock


Overclocker Der8auer has published the results of a survey of more than 3,000 Ryzen 7nm owners who have purchased AMD’s new CPUs since they went on sale in July. Last month, reports surfaced that the Ryzen 3000 family weren’t hitting their boost clocks as well as some enthusiasts expected. Now, we have some data on exactly what those figures look like.

There are, however, two confounding variables. First, Der8auer had no way to sort out which AMD users had installed Windows 1903 and were using the most recent version of the company’s chipset drivers. AMD recommends both to ensure maximum performance and desired boost behavior. Der8auer acknowledges this but believes the onus is on AMD to communicate with end-users regarding the need to use certain Windows versions to achieve maximum performance.

Second, there’s the fact that surveys like this tend to be self-selecting. It’s possible that only the subset of end-users who aren’t seeing the performance they desire will respond in such a survey. Der8auer acknowledges this as well, calling it a very valid point, but believes that his overall viewing community is generally pro-AMD and favorably inclined towards the smaller CPU manufacturer. The full video can be seen below; we’ve excerpted some of the graphs for discussion.

Der8auer went over the data from the survey thoroughly in order to throw out results that didn’t make sense or were obviously submitted in bad faith. He compiled data on the 3600, 3600X, 3700X, 3800X, and 3900X.SEEAMAZON_ET_135 See Amazon ET commerce Clock distributions were measured at up to two deviations from the mean. Maximum boost clock was tested using Cinebench R15’s single-threaded test, as per AMD’s recommendation.

Der8auer-3600

Data and chart by Der8auer. Click to enlarge

In the case of the Ryzen 7 3600, 49.8 percent of CPUs hit their boost clock of 4.2GHz, as shown above. As clocks rise, however, the number of CPUs that can hit their boost clock drops. Just 9.8 percent of 3600X CPUs hit their 4.4GHz. The 3700X’s chart is shown below for comparison:

Data and chart by Der8auer. Click to enlarge

The majority of 3700X CPUs are capable of hitting 4.375GHz, but the 4.4GHz boost clock is a tougher leap. The 3800X does improve on these figures, with 26.7 percent of CPUs hitting boost clock. This seems to mirror what we’ve heard from other sources, which have implied that the 3800X is a better overclocker than the 3700X. The 3900X struggles more, however, with just 5.6 percent of CPUs hitting their full boost clock.

We can assume that at least some of the people who participated in this study did not have Windows 10 1903 or updated AMD drivers installed, but AMD users had the most reason to install those updates in the first place, which should help limit the impact of the confounding variable.

The Ambiguous Meaning of ‘Up To’

Following his analysis of the results, Der8auer makes it clear that he still recommends AMD’s 7nm Ryzen CPUs with comments like “I absolutely recommend buying these CPUs.” There’s no ambiguity in his statements and none in our performance review. AMD’s 7nm Ryzen CPUs are excellent. But an excellent product can still have issues that need to be discussed. So let’s talk about CPU clocks.

The entire reason that Intel (who debuted the capability) launched Turbo Boost as a product feature was to give itself leeway when it came to CPU clocks. At first, CPUs with “Turbo Boost” simply appeared to treat the higher, optional frequency as their effective target frequency even when under 100 percent load. This is no longer true, for multiple reasons. CPUs from AMD and Intel will sometimes run at lower clocks depending on the mix of AVX instructions. Top-end CPUs like the Core i9-9900K may throttle back substantially when under full load for a sustained period of time (20-30 seconds) if the motherboard is configured to use Intel default power settings.

In other realms, like smartphones, it is not necessarily unusual for a device to never run at maximum clock. Smartphone vendors don’t advertise base clocks at all and don’t provide any information about sustained SoC clock under load. Oftentimes it is left to reviewers to typify device behavior based on post-launch analysis. But CPUs from both Intel and AMD have typically been viewed as at least theoretically being willing capable of hitting boost clock in some circumstances.

The reason I say that view is “theoretical” is that we see a lot of variation in CPU behavior, even over the course of a single review cycle. It’s common for UEFI updates to arrive after our testing has already begun. Oftentimes, those updated UEFIs specifically fix issues with clocking. We correspond with various motherboard manufacturers to tell them what we’ve observed and we update platforms throughout the review to make certain power behavior is appropriate and that boards are working as intended. When checking overall performance, however, we tend to compare benchmark results against manufacturer expectations as opposed to strictly focusing on clock speed (performance, after all, is what we are attempting to measure). If performance is oddly low or high, CPU and RAM clocks are the first place to check.

It’s not unusual, however, to be plus-or-minus 2-3 percent relative to either the manufacturer or our fellow reviewers, and occasional excursions of 5-7 percent may not be extraordinary if the benchmark is known for producing a wider spread of scores. Some tests are also more sensitive than others to RAM timing, SSD speed, or a host of other factors.

Now, consider Der8auer’s data on the Ryzen 9 3900X:

Der8auer-3900X

Image and data by Der8auer. Click to enlarge

Just 5 percent of the CPUs in the batch are capable of hitting 4.6GHz. But a CPU clocked at 4.6GHz is just 2 percent faster than a CPU clocking in at 4.5GHz. A 2 percent gap between two products is close enough that we call it an effective tie. If you were to evaluate CPUs strictly on the basis of performance, with a reasonable margin of say, 3 percent, you’d wind up with an “acceptable” clock range of 4,462MHz – 4,738MHz (assuming a 1:1 relationship between CPU clock and performance). And if you allow for that variance in the graphs above, a significantly larger percentage — though no, not all — of AMD CPUs “qualify” as effectively reaching their top clock.

On the other hand, 4.5GHz or below is factually not 4.6GHz. There are at least two meaningfully different ways to interpret the meaning of “up to” in this context. Does “up to X.XGHz” mean that the CPU will hit its boost clock some of the time, under certain circumstances? Or does it mean that certain CPUs will be able to hit these boost frequencies, but that you won’t know if you have one or not? And how much does that distinction matter, if the overall performance of the part matches the expected performance that the end-user will receive?

Keep in mind that one thing these results don’t tell us is what overall performance looks like across the entire spread of Ryzen 7 CPUs. Simply knowing the highest boost clock that the CPU hits doesn’t show us how long it sustained that clock. A CPU that holds a steady clock of 4.5GHz from start to finish will outperform a CPU that bursts to 4.6GHz for one second and drops to 4.4GHz to finish the workload. Both of these behaviors are possible under an “up to” model.

Manufacturers and Consumers May See This Issue Differently

While I don’t want to rain on his parade or upcoming article, we’ve spent the last few weeks at ET troubleshooting a laptop that my colleague David Cardinal recently bought. Specifically, we’ve been trying to understand its behavior under load when both the CPU and GPU are simultaneously in-use. Without giving anything away about that upcoming story, let me say this: The process has been a journey into just how complicated thermal management is now between various components.

Manufacturers, I think, increasingly look at power consumption and clock speed as a balancing act in which performance and power are allocated to the components where they’re needed and throttled back everywhere else. Increased variability is the order of the day. What I suspect AMD has done, in this case, is set a performance standard that it expects its CPUs to deliver rather than a specific clock frequency target. If I had to guess at why the company has done this, I would guess that it’s because of the intrinsic difficulties of maintaining high clock speeds at lower process nodes. AMD likely chose to push the envelope on its clock targets because it made the CPUs compare better against their Intel equivalents as far as maximum clock speeds were concerned. Any negative response from critics would be muted by the fact that these new CPUs deliver marked benefits over both previous-generation Ryzen CPUs and their Intel equivalents at equal price points.

Was that the right call? I’m not sure. This is a situation where I genuinely see both sides of the issue. The Ryzen 3000 family delivers excellent performance. But even after allowing for variation caused by Windows version, driver updates, or UEFI issues on the part of the manufacturer, we don’t see as many AMD CPUs hitting their maximum boost clocks as we would expect, and the higher-end CPUs with higher boost clocks have more issues than lower-end chips with lower clocks. AMD’s claims of getting more frequency out of TSMC 7nm as compared with GF 12/14nm seem a bit suspect at this point. The company absolutely delivered the performance gains we wanted, and the power improvements on the X470 chipset are also very good, but the clocking situation was not detailed the way it should have been at launch.

There are rumors that AMD supposedly changed boost behavior with recent AGESA versions. Asus employee Shamino wrote:

i have not tested a newer version of AGESA that changes the current state of 1003 boost, not even 1004. if i do know of changes, i will specifically state this. They were being too aggressive with the boost previously, the current boost behavior is more in line with their confidence in long term reliability and i have not heard of any changes to this stance, tho i have heard of a ‘more customizable’ version in the future.

I have no specific knowledge of this situation, but this would surprise me. First, reliability models are typically hammered out long before production. Companies don’t make major changes post-launch save in exceptional circumstances, because there is no way to ensure that the updated firmware will reach the products that it needs to reach. When this happens, it’s major news. Remember when AMD had a TLB bug in Phenom? Second, AMD’s use of Adaptive Frequency and Voltage Scaling is specifically designed to adjust the CPU voltage internally to ensure clock targets are hit, limiting the impact of variability and keeping the CPU inside the sweet spot for clock.

I’m not saying that AMD would never make an adjustment to AGESA that impacted clocking. But the idea that the company discovered a critical reliability issue that required it to make a subtle change that reduced clock by a mere handful of MHz in order to protect long-term reliability doesn’t immediately square with my understanding of how CPUs are designed, binned and tested. We have reached out to AMD for additional information.

I’m still confident and comfortable recommending the Ryzen 3000 family because I’ve spent a significant amount of time with these chips and seen how fast they are. But AMD’s “up to” boost clocks are also more tenuous than we initially knew. It doesn’t change our expectation of the part’s overall performance, but the company appears to have decided to interpret “up to” differently this cycle than in previous product launches. That shift should have been communicated. Going forward, we will examine both Intel and AMD clock behavior more closely as a component of our review coverage.

Now Read:




10 minutes mail – Also known by names like : 10minemail, 10minutemail, 10mins email, mail 10 minutes, 10 minute e-mail, 10min mail, 10minute email or 10 minute temporary email. 10 minute email address is a disposable temporary email that self-destructed after a 10 minutes. https://tempemail.co/– is most advanced throwaway email service that helps you avoid spam and stay safe. Try tempemail and you can view content, post comments or download something

AMD Will Pay $12.1M to Settle Bulldozer CPU False Marketing Claims


This site may earn affiliate commissions from the links on this page. Terms of use.

Back in 2015, AMD was sued by a pair of individuals claiming that the company lied when it sold Bulldozer products to customers. The lawsuit — which I have always believed is without technical merit — essentially conflated being disappointed with the FX family’s performance with the idea that AMD had lied by marketing Bulldozer as an eight-core CPU.

AMD has agreed to settle the case for the relatively low sum of $12.1M. According to the lawsuit, this is a sufficient sum of money to ensure that the members of the class will receive compensation of at least $35, even if up to 20 percent of the class members notify that they wish to be included in the settlement — a rather high number. The brief estimates that between 50,000 and 150,000 people may seek reimbursement for purchases of Bulldozer or Piledriver parts.

Members of the settlement class are defined as individuals who purchased “one or more of the following AMD computer chips either (1) while residing in California or (2) after visiting the AMD.com website: FX-8120, FX-8150, FX-8320, FX-8350, FX-9370, and FX 9590.”

That’s one of the ways you can tell that this lawsuit didn’t actually have any merit to it: It’s confined to AMD’s eight-core CPUs. There’s no logical reason for this to be true — if AMD actually falsely advertised its eight-core chips, it also falsely advertised its six-core, quad-core, and dual-core CPUs as well. AMD had a top-to-bottom product mix in-market based on Bulldozer and its derivatives. If the eight-core chips aren’t “real” eight-cores because they shared resources, then why are the other chips off the hook?

There’s one line in the brief that still grates on me, even though the lawsuit is settled. “According to Plaintiffs, the “cores” in the Bulldozer line are actually sub-processors that cannot operate and simultaneously multitask as actual cores.”

Bulldozer Blend

Bulldozer shared resources. It didn’t use a processor / sub-processor configuration

This is untrue. For an example of a CPUSEEAMAZON_ET_135 See Amazon ET commerce with true sub-processors, look to Sony’s Cell Broadband Engine. The Cell had a Power Processor Element (PPE) and up to eight secondary Synergistic Processing Elements (SPEs). Seven of these were enabled for the PS3. As RealWorldTech wrote (concerning Cell):

The function of the PPE is to act as the host processor and perform real time resource scheduling for the SPEs. To implement those functionalities, PPE modules must be written to perform generic processing tasks and I/O handling. Then, to fully utilize the power of the CELL processor, programmers must focus their attention on the creation of SPE modules. Each SPE module should use multiple SPE threads to take advantage of the parallelism afforded by the multiple SPE’s. To simplify the task of scheduling, all SPE threads in an SPE module are always scheduled simultaneously. Furthermore, SPE threads within an SPE module are started and stopped at the same time to reduce the complexity of synchronization. However, the complexity of scheduling remains and a PPE module must handle the scheduling of the SPE’s on a module-by-module basis.

If you want an example of a CPU that has “sub-processors” that must then be corralled and properly fed in order to keep performance high, it’s Cell, not Bulldozer. Bulldozer didn’t have “sub-processors.” Bulldozer shared certain execution units and, as we’ve documented before, continued to offer improved performance when workloads scaled above four threads. It did not have an asymmetrical core configuration with one core used for scheduling workloads on all the others.

No, Bulldozer and Piledriver chips didn’t offer equivalent performance to their Intel counterparts, which is why AMD’s CPU prices were so low for much of the same time period. In 2014, an FX-9590 could be had for as little as $229. The equivalent eight-core Broadwell HEDT CPU in 2015 was well over $1000. And one of the basic rules of PC components that still generally holds true is that higher prices tend to equal generally higher performance.

The problem with this lawsuit is the same as it ever was. The plaintiffs wanted to pretend that AMD’s lower performance constituted false marketing because one AMD core offered dramatically less performance than one Intel core. But CPU cores are not defined by performance, and this lawsuit has never even attempted to articulate a technical distinction between Bulldozer and Piledriver’s resource sharing and the resource-sharing of other CPUs.

This lawsuit was never grounded in a technical argument over the definition of a CPU core. At least now it’s dealt with.

Now Read:




10 minutes mail – Also known by names like : 10minemail, 10minutemail, 10mins email, mail 10 minutes, 10 minute e-mail, 10min mail, 10minute email or 10 minute temporary email. 10 minute email address is a disposable temporary email that self-destructed after a 10 minutes. https://tempemail.co/– is most advanced throwaway email service that helps you avoid spam and stay safe. Try tempemail and you can view content, post comments or download something

Leak Points to Intel Comet Lake Desktops Arriving in 2020: 10 Cores, New Socket


This site may earn affiliate commissions from the links on this page. Terms of use.

We’ve heard for a while that Intel might respond to AMD’s 7nm onslaught with higher core counts on desktop processors. A new leak suggests that’s exactly what the company will do, with a new chipset supporting up to 10-core CPUs built on the company’s mature 14nm process. This will supposedly require a new CPU socket, as Intel is increasing the power delivery and capability of its desktop motherboards to compensate for the higher power requirements in a 10-core chip.

The new socket is supposedly LGA 1200 and the top-end chips will offer 10C/20T configurations if rumors are to be believed. TDP is also finally rising, up to 125W. This last is something of an interesting point. Intel CPU power consumption currently has little relation to TDP if you allow the CPU to boost; TDP is measured at base clock, not boost clock. Intel may need to expand TDP to deal with adding more CPU cores, but in the past, it has kept its CPUsSEEAMAZON_ET_135 See Amazon ET commerce in the same TDP brackets by cutting base clock.

intel-comet-lake-lga-1159-1200-news-again-4

Image by XFastest

Our guess is that Intel is raising TDP because it doesn’t want to do this again. Cutting its base clocks further to remain within the old 95W TDP bracket with 10 cores instead of eight is probably possible, but runs the risk of creating negative comparisons against previous generation parts or AMD hardware. Intel reduced base clock speed when it moved from the Core i7-8700K to the Core i9-9900K — the 9900K has a base clock of 3.6GHz, while the 8700K is 3.7GHz. The old 7700K had a base clock of 4.2GHz, though obviously vastly inferior performance overall.

The relatively low base clock may not have been much of a concern when AMD’s own Ryzen 7 base clocks were also in the 3.6 – 3.7GHz range, but AMD adjusted its own clock ranges slightly for 7nm. The 3700X has a base clock of 3.7GHz, while the Ryzen 3800X is 3.9GHz base and the 3900X is a 3.8GHz chip. Intel may want to bring clocks up slightly to make certain it matches on base, and the only way to do that is to nudge the TDP higher.

Image by XFastest

Supposedly the new 400-series adds another 49 pins to hit LGA1200, with the extra pins used for power delivery. There would be a few new features, like integrated 802.11ax support and presumably an easier method of integrating Thunderbolt 3, similar to what we’ve seen in mobile. 65W and 35W CPUs would still be supported (and released) on this latest 14nm revision, it’s just the enthusiast TDP bracket that would stretch up to 125W. Intel would likely try to keep the boost clock as high as possible, but I don’t want to speculate on what that will be.

Catching AMD Wouldn’t Be the Goal

Anyone who has paid attention to relative standings between AMD and Intel has already realized that a 10-core Comet Lake isn’t going to match AMD in most performance areas. The 16-core Ryzen 9 3950X is on its way, and we’ve already seen what happens when a 10-core Intel HEDT CPU takes on a 16-core AMD Threadripper: The 10-core CPU loses. Mostly, it loses by a lot.

But while this might sound faintly absurd, beating AMD in absolute multi-core performance probably isn’t the goal here. Both companies are working towards their respective strengths: For AMD, that means emphasizing multi-core while working to improve single-core, where Intel still holds a narrow advantage in some games at 1080p. For Intel, that means attempting to improve single-core while competing more effectively in multi-core. Bumping up to 10 cores and raising base clock via TDP increase probably helps the company achieve that. It’s going to take more than +2 cores to put Intel seriously back in the multi-threading game, and the company knows that.

The rumors of a 10-core Comet Lake are strong enough and have been running around for long enough that I think they’re pretty solid. We suspect this generation will see the return of Hyper-Threading as well to boost Intel’s competitive standing against AMD at lower price brackets. Without any price information, we obviously can’t opine on how the two companies will stack up, but Intel has a history of introducing better price/performance ratios at major product launches. This suggests we’ll see the company adjust its core count/dollar strategy at the next major launch.

Now Read:




10 minutes mail – Also known by names like : 10minemail, 10minutemail, 10mins email, mail 10 minutes, 10 minute e-mail, 10min mail, 10minute email or 10 minute temporary email. 10 minute email address is a disposable temporary email that self-destructed after a 10 minutes. https://tempemail.co/– is most advanced throwaway email service that helps you avoid spam and stay safe. Try tempemail and you can view content, post comments or download something

AMD Reports Q2 2019 Market Share as Intel Sticks to Its Guns on Pricing


This site may earn affiliate commissions from the links on this page. Terms of use.

Over the past month, AMD let fly with two-thirds of its 7nm product lineup. Both the desktop and server spaces have now been refreshed with 7nm CPUs. Intel’s response? Meh.

Let’s do the market share data first. Heading into Q2, AMD has a series of pushes and drags on its market performance. Positive factors include Intel’s ongoing CPU shortage (expected to peak in Q2 2019) and the strong overall market response to Ryzen in desktop, laptop, and server. Negative factors include ongoing trade disputes with China and the possibility of a 12/14nm sales slowdown as the 7nm launch approached.

Data on AMD’s market share in desktop, server, and laptops was provided by Dean McCarron of Mercury Research via THG. We’ve covered Mercury Research’s figures before — sticking with one firm allows us to create an apples-to-apples comparison for how AMD’s market share is evolving over time. There’s good news on multiple fronts for the smaller CPU manufacturer:

AMD-Market-Share-Q2-2019

Data by Dean McCarron, Mercury Research. Chart by ExtremeTech

AMD’s desktop market share was flat in Q2, at 17.1 percent of the channel. This isn’t necessarily surprising. AMD has been cutting prices on its older 2000 series parts to stimulate uptake, but there was an unmistakable surge of interest in third-generation RyzenSEEAMAZON_ET_135 See Amazon ET commerce after those chips launched. We don’t know how strong the surge will be, but European retailer Mindfactory released July sales data showing that AMD shipments skyrocketed after July 7. The DIY retail market for CPUs is typically estimated to be between 10-20 percent of the space. If AMD continues to enjoy high retail demand, we will see that reflected in the Q3 2019 figures for overall desktop market share. As always, when considering data from a single company or source, keep in mind that it reflects information at that specific retailer, not the wider market.

Notebook share is the major winner, both year-on-year and quarter-on-quarter. AMD has picked up two percentage points of share since the beginning of the year and grown its market share by 1.6x relative to Q2 2018. The challenge for the company will be keeping that share as Intel’s CPU shortage lessens. Some analysts have predicted that AMD would lose its gains in this area as Intel shipped more cores; we’ll see what Q3 shows us in that regard.

The server market continues to tick upwards, with AMD claiming 3.4 percent of the space now, up from 1.4 percent the previous year. AMD didn’t hit its previous goal of taking 5 percent of the entire server market by Q4 2018 (the company told us earlier this year that it believed it had secured at least 5 percent of the 2S / dual-socket server space). We’re not concerned by the relatively slow server ramp — the Epyc CPUs AMD just launched are the most impressive performance leap the company has ever delivered in that market.

Overall, AMD’s market share figures show a company executing well and gaining share. AMD has predicted that its Compute and Graphics revenue will increase by 1.2x over 2018 when the impact of slowing semi-custom design sales is taken into effect (Xbox One and PS4 sales are falling as the new console cycle builds momentum).

As for Intel, the larger CPU vendor is sticking to its guns. Intel’s August CPU Price List gives the expected list prices in 1K units for its complete product lineup. There are no changes whatsoever. These official price guides don’t necessarily reflect the price that chips are selling for in the retail channel, and they certainly don’t reflect the price that OEMs pay in bulk, but they represent Intel’s officially communicated pricing.

IntelPricesAugust

The full document is available for your perusal, but it looks like the above straight down the line. Intel may adjust its pricing quietly behind the scenes, or it may make larger, formal cuts at a later date, but the firm is sticking to its guns for now. From Intel’s perspective, this makes good sense. AMD may have just launched an impressive suite of products, but Intel presumably wants to see how the market responds to them before it makes a determination about what to do.

Intel’s response to AMD since 2017 has been to avoid direct price cuts and instead introduce different products at adjusted price points. That might not work in server, given that Cascade Lake has already launched and there aren’t going to be opportunities to respond to AMD with a new family deployment in the near term. Intel might cut prices later this year, or opt to wait to change its product alignments until Cooper Lake or Ice Lake are ready to ship. For now, AMD continues to gain market share with expected improvements in the back half of 2019 related to the 7nm Ryzen refresh.

Now Read:




10 minutes mail – Also known by names like : 10minemail, 10minutemail, 10mins email, mail 10 minutes, 10 minute e-mail, 10min mail, 10minute email or 10 minute temporary email. 10 minute email address is a disposable temporary email that self-destructed after a 10 minutes. https://tempemail.co/– is most advanced throwaway email service that helps you avoid spam and stay safe. Try tempemail and you can view content, post comments or download something

Microsoft: Xbox Next Will Bring Faster Load Times, 60fps, Backward Compatibility


This site may earn affiliate commissions from the links on this page. Terms of use.

The next console generation is less than 18 months away, and Microsoft is starting to share a little more information about what it’s prioritizing for the next generation of Xbox consoles. Playability, load times, and backward compatibility for controllers and software are all top priorities for Redmond with the launch of Xbox Next.

“I think the area that we really want to focus on next-generation is frame rate and playability of the games,” Spencer told Gamespot:

Ensuring that the games load incredibly fast, ensuring that the game is running at the highest frame rate possible. We’re also the Windows company, so we see the work that goes on [for] PC and the work that developers are doing. People love 60 frames-per-second games, so getting games to run at 4K 60 [fps] I think will be a real design goal for us.

The thing that’s interesting is, this generation, we’ve really focused on 4K visuals and how we bring both movies through 4K Blu-ray and video streaming, and with Xbox One X allowing games to run at 4K visuals will make really strong visual enhancements next generation. But playability is probably the bigger focus for us this generation. How fast do [games] load? Do I feel like I can get into the game as fast as possible and while it’s playing? How does it feel? Does this game both look and feel like no other game that I’ve seen? That’s our target.”

This is more or less what ET predicted earlier this year. 60fps is a much more realistic target for the Xbox Next than the 240fps rumor that was going around. Despite various vague statements that the Xbox Next will support 8K, Spencer sensibly makes no mention of it as a gaming resolution target. There’s no chance a 2020 console will have a GPU powerful enough to support this resolution and we’re glad to see the company pivoting towards an emphasis on other aspects of gaming.

According to Microsoft, backward compatibility is a key pillar for Xbox moving forward. Xbox One, Xbox 360, and OG Xbox games will all continue to be supported on Xbox Next, Spencer told Gamespot. The company has promised that this backwards compatibility pledge extends to controllers as well, saying, “So really, the things that you’ve bought from us, whether the games or the controllers that you’re using, we want to make sure those are future compatible with the highest fidelity version of our console, which at that time will obviously be the one we’ve just launched.”

Will Microsoft Actually Push a 60fps Target?

Historically, there have been a handful of games that specifically targeted 60fps for console play, but it’s been an uncommon frame rate target. The Xbox One X and PS4 Pro expanded the list of titles that offered this frame rate by encouraging developers to release updates for new and existing games that would add new resolution options or the ability to play at higher frame rates than the base title supported. Actually moving the game industry (back) towards a 60 fps target, however, would be a feat.

There’s some reason to think both console manufacturers could pull it off. The Xbox Next and PlayStation 5 will both target performance levels above the existing Xbox One and PS4 Pro.SEEAMAZON_ET_135 See Amazon ET commerce The use of Ryzen and an RDNA-derived GPU for both platforms guarantees that the consoles will pack more performance, but the level of perceived visual quality improvement one console generation offers over the next has been shrinking every cycle. Instead of simply chasing improved levels of detail, Spencer wants developers to target smoothness and load times — two other objective areas where it’s possible to deliver major generational gains, particularly with SSDs being adopted for the first time.

Statista-TV-Market-Share

One major question is how the 1080p/4K split will be addressed. Spencer refers to a 4K/60fps target, but 1080p still accounts for a large percentage of TVs sold and the install base for the older standard is enormous. The simplest way for Microsoft to handle a 1080p output limit is to render internally at 4K and then output at 1080p. This effectively applies supersampled AA to the entire image and would deliver a substantial improvement in image quality over standard 1080p. With the PS4 Pro and Xbox One X, both Microsoft and Sony gave developers a variety of ways they could use the additional power of the newer consoles to punch up the base experience, and we expect a similar approach here. One of the advantages of having a powerful GPU paired with a lower-resolution display is that you can crank up secondary features like AA without worrying about the performance impact, and we’re hoping Microsoft brings some of that flexibility to its Xbox Next design.

The PC gamer in me can’t help noting that the already barely-there line between consoles and PCs will be even thinner next cycle. Consoles have provided backward compatibility before, but it’s often come up with qualifiers related to your hardware version and been limited to one previous platform. Microsoft isn’t just going to support Xbox One games on Xbox Next, it’ll continue supporting Xbox 360 and OG Xbox, as well as Xbox One peripherals. That’s exactly the kind of backward compatibility support we would expect when upgrading from PC build to the next and it’s nice to see consoles catching up after a few decades.

The flip side, of course, is that the console-versus-PC debate gets goofier every generation. At this point, you might as well just ask “controller or keyboard?” (keyboard, natch). Functionally, at the hardware level, we’re all gaming on PCs.

Now Read: 




10 minutes mail – Also known by names like : 10minemail, 10minutemail, 10mins email, mail 10 minutes, 10 minute e-mail, 10min mail, 10minute email or 10 minute temporary email. 10 minute email address is a disposable temporary email that self-destructed after a 10 minutes. https://tempemail.co/– is most advanced throwaway email service that helps you avoid spam and stay safe. Try tempemail and you can view content, post comments or download something

Welcome to the Second Golden Age of AMD


On Wednesday, August 7, AMD launched the 7nm refresh of its Epyc CPU family. These new cores don’t just one-up Intel in a particular category, they deliver enormous improvements in every category. AMD has cut its per-core pricing, increased IPC, and promises to deliver far more CPU cores than an equivalent Intel socket.

There’s only been one other time that AMD came close to beating Intel so decisively — the introduction of dual-core Opteron and Athlon 64 X2 in 2005. Epyc’s launch this week feels bigger. In 2005, AMD’s dual cores matched Intel on core count, outperformed Intel clock-for-clock and core-for-core, and were quite expensive. This time, AMD is going for the trifecta, with higher performance, more cores, and lower per-core pricing. It’s the most serious assault on Intel’s high-end Xeon market that the company has ever launched.

Industry analysts have already predicted that AMD’s server market share could double within the next 12 months, hitting 10 percent by Q2 2020. Achieving larger share in the data center market is a critical goal for AMD. A higher share of the enterprise and data center market won’t just increase in AMD’s revenue, it’ll help stabilize the company’s financial performance. One of AMD’s critical weaknesses for the last two decades has been its reliance on low-end PCs and retail channel sales. Both of these markets tend to be sensitive to recessions. The low-end PC market also offers the least revenue per-socket and the smallest margins. Enterprise business cycles are less impacted by downturns. AMD briefly achieved its goal of substantial enterprise market share in 2005 – 2006, when its server market share broke 20 percent.

Enthusiasts like to focus on AMD’s desktop performance, but outside of gaming, overall PC sales are declining. Growth in narrow categories like 2-in-1’s has not been sufficient to offset the general sales decline. While no one expects the PC market to fail, it’s clear that the 2011 downturn was not a blip. It still makes sense for AMD to fight to expand its share of the desktop and mobile markets, but it makes even more sense to fight for a share of the server space, where revenue and unit shipments have both grown over the past 8 years. 2019 may be a down year for server sales but the larger trend towards moving workloads into the cloud shows no signs of slowing down.

Why Rome is a Threat to Intel

In our discussions of Rome, we’ve focused primarily on the Epyc 7742. This graph, from ServetheHome, shows Epyc versus Xeon performance across more SKUs. Take a look down the stack:

AMD-EPYC-7002-Linux-Kernel-Compile-Benchmark-Result

Data and graph by ServeTheHome

A pair of AMD Epyc 7742’s is $13,900. A brace of 7502’s (32C/64T, 2.5GHz base, 3.35GHz boost, $2600) is $5200. The Intel Xeon Platinum 8260 is a $4700 CPU, but there are four of them in the highest-scoring system, for a total cost of $18,800. $13,900 worth of AMD CPUs buys you ~1.19x more performance than $18,800 worth of Intel CPUs. The comparison doesn’t get better as we drop down the stack. Four E7-8890v4’s would run nearly $30,000 at list price. A pair of Platinum 8280s is $20,000. The 8676L is a $16,600 CPU at list price.

But it’s not just price, or even price/performance where AMD has an advantage. Intel heavily subdivides its product features and charges considerably more for them. Consider, for example, the price difference between the Xeon 8276, 8276M and Xeon Platinum 8276L. These three CPUs are identical, save for the maximum amount of RAM each supports. The pricing, however, is anything but.

Xeon-Comparison

Oh, you need 4.5TB of RAM? That’ll be an extra $8K.

In this case, “Maximum memory” includes Intel Optane. The 4.5TB RAM capability assumes 3TB of Optane installed alongside 1.5TB of RAM. For comparison, all 7nm Rome CPUs offer support for up to 4TB of RAM. It’s a standard, baked-in feature on all CPUs, and it simplifies product purchases and future planning. AMD isn’t just offering chips at lower prices, it’s taking a bat to Intel’s entire market segmentation method. Good luck justifying an $8000 price increase for additional RAM support when AMD is willing to sell you 4TB worth of addressable capacity at base price.

One of AMD’s talking points with Epyc is how it offers the benefits of a 2S system in a 1S configuration. This chart from ServetheHome lays out the differences nicely:

AMD-EPYC-7002-v-2nd-Gen-Intel-Xeon-Scalable-Top-Line-Comparison

Image by ServeTheHome

Part of AMD’s advantage here is that it can hit multiple Intel weaknesses simultaneously. Need lots of PCIe lanes? AMD is better. Want PCIe 4.0? AMD is better. If your workloads scale optimally with cores, no one is selling more cores per socket than AMD. Intel can still claim a few advantages — it offers much larger unified L3 caches than AMD (each individual AMD L3 cache is effectively 16MB, with a 4MB slice per core). But those advantages are going to be limited to specific applications that respond to them. Intel wants vendors to invest in building support for its Optane DC Persistent Memory, but it isn’t clear how many are doing so. The current rock-bottom prices for both NAND and DRAM have made it much harder for Optane to compete in-market.

The move to 7nm has given AMD an advantage in power consumption as well, particularly when you consider server retirements. STH reports single-threaded power consumption on a Xeon Platinum 8180 at ~430W (wall power), compared to ~340W of wall power for the AMD Epyc 7742 system. What they note, however, is that the high core count on AMD’s newest CPUs will allow them to retire between 6-8 sockets worth of 2017 Intel Xeons (60-80 cores) in order to consolidate the workloads into a single AMD Epyc system. The power savings from retiring 3-4 dual-socket servers is much larger than the ~90W difference between the two CPUs.

Features like DL Boost may give Intel a performance kick in AI and machine learning workloads, but the company is going to be fighting a decidedly uphill battle and thus far, the data we’ve seen suggests these factors can help Intel match AMD as opposed to beating it.

How Much Do Xeon’s Really Cost?

The list prices we’ve been quoting for this story are the formal prices that Intel publishes for Xeon CPUs in 1K units. They are also widely known to be inaccurate, at least as far as the major OEMs are concerned. We don’t know what Dell, HPE, and other vendors actually pay for Xeon CPUs, but we do know it’s often much less than list price, which is typically paid only by the retail channel.

The gap between Intel list prices and actual prices may explain why Threadripper hasn’t had much market penetration. Despite the fact that Threadripper CPUs have offered vastly more cores per $ and higher performance per dollar for two years now, the OEMs that share sales information, like MindFactory, report very low sales of both Threadripper and Skylake-X. Intel, however, has also shown no particular interest in slashing Core X prices. It continues to position a 10-core Core i9-9820X as appropriate competition for chips like the Threadripper 2950X, despite AMD’s superior performance in that match-up. This strongly implies that Intel is having no particular trouble selling 10-core CPUs to the OEM partners that want them, despite Threadripper’s superior price/performance ratio and that AMD’s share of the workstation market is quite limited.

While Intel has trimmed its HEDT prices (the 10-core Core i7-6950X was $1723 in 2016, compared to $900 for a Core i9-9820X today), it has never attempted to price/performance match against Threadripper. If that bulwark is going to crumble, Rome will be the CPU that does it. Ryzen and Threadripper will be viewed as more credible workstation CPUs if Epyc starts chewing into the server market.

Intel is Playing AMD’s Game Now

Intel can cut its prices to respond to AMD in the short-term. Long-term, it’s going to have to challenge AMD directly. That’s going to mean delivering more cores at lower prices, with higher amounts of memory supported per socket. Cooper Lake, which is built on 14nm and includes additional support for new AI-focused AVX-512 instructions, will arrive in the first half of next year. That chip will help Intel focus on some of the markets it wants to compete in, but it won’t change the core count differential between the two companies. Similarly, Intel may have trouble putting a $3000 – $7000 premium on support for 2TB – 4.5TB of RAM given that AMD is willing to support up to 4TB of memory on every CPU socket.

We don’t know yet if Intel will increase core counts with Ice Lake servers, or what sorts of designs it will bring to market, but ICL in servers is at least a year away. By the time ICL servers are ready to ship, AMD’s 7nm EUV designs may be ready as well. Having kicked off the mother of all refresh cycles with Rome, AMD’s challenge over the next 12 – 24 months will be demonstrating ongoing smooth update cadences and continued performance improvements. If it does, it has a genuine shot at building the kind of stable enterprise market it’s desired for decades.

Don’t Get Cocky

When AMD launched dual-core Opteron and its consumer equivalent, the Athlon 64 X2, there was a definite sense that the company had finally arrived. Just over a year later, Intel launched the Core 2 Duo. AMD spent the next 11 years wandering in the proverbial wilderness. Later, executives would admit that the company had taken its eye off the ball and become distracted with the ATI acquisition. A string of problems followed.

The simplistic assumption that the P4 Prescott was a disaster Intel couldn’t recover from proved incorrect. Historically, attacking Intel has often proven akin to hitting a rubber wall with a Sledgehammer (pun intended). Deforming the wall is comparatively easy. Destroying it altogether is a far more difficult task. AMD has perhaps the best opportunity to take market share in the enterprise that it has ever had with 7nm Epyc, but building server share is a slow and careful process, not a wind sprint. If AMD wants to keep what it’s building this time around, it needs to play its cards differently than it did in 2005 – 2006.

But with that said, I don’t use phrases like “golden age” lightly. I’m using it now. While I make no projections on how long it will last, 7nm Epyc’s debut has made it official, as far as I’m concerned: Welcome to the second golden age of AMD.

Now Read:




10 minutes mail – Also known by names like : 10minemail, 10minutemail, 10mins email, mail 10 minutes, 10 minute e-mail, 10min mail, 10minute email or 10 minute temporary email. 10 minute email address is a disposable temporary email that self-destructed after a 10 minutes. https://tempemail.co/– is most advanced throwaway email service that helps you avoid spam and stay safe. Try tempemail and you can view content, post comments or download something

AMD’s Ryzen 3000 Family is Dominating Sales at European Retailer


This site may earn affiliate commissions from the links on this page. Terms of use.

Mindfactory, a major German computer hardware retailer, has published new sales data for the month of July. AMD has had an extremely good month, even by the standards of previous Ryzen launches.

Before we dive into the numbers, the usual caveats: These figures reflect data from a single German company, not the entire retail channel. Most companies don’t publish data like this. Data from Amazon and Newegg shows somewhat different splits on the best-selling CPU cores. Amazon has AMD occupying 12 of the Top 20 best-selling chips, but only three of the parts are based on Matisse, none higher than 6th place. Newegg has AMD holding 11 of the Top 20 spots, but the first Matisse CPU is in 12th place — the Ryzen 7 3600.

This is not to imply that the Mindfactory data is wrong, but it should not be read as speaking to the entire retail market.

Reddit user Ingebor has published Mindfactory sales data for the month of June. First up, unit sales:

That’s a very strong launch month for AMD, considering that the company didn’t even go on-sale until 7/7. While AMD’s market share grew 11 percentage points, it’s the increase in total processor shipments that reflects strong demand for the new parts. In June, Mindfactory sold ~9000 – 9500 AMD CPUs and ~4000 – 4500 Intel chips. In July, AMD appears to have sold ~18,500 CPUs and just shy of 5000 Intel CPUs. It looks as though Intel demand was driven by the 9900K, 9700K, and 9600K, implying that at least some Intel fans delayed purchases to see if AMD would bring something to the table that they wanted to purchase, then pulled the trigger on upgrades of their own. A great many shoppers, however, were clearly looking for something from Team Red. It’s good to see the 3900X on this list — the chip may be difficult to find right now, but this is evidence that parts are making it to market.

The previous slide focused on unit shipments, this slide captures earned revenue. This graph is remarkable for how small the gap is between Intel’s market share (21 percent) and its revenue (25 percent). Typically, Intel revenue share is much larger — compare the previous month, when Intel was 32 percent of unit shipments but 48 percent of revenue for an example of how this trend usually moves. In order for AMD to be doing this much better in terms of overall revenue share, the only explanation is that AMD’s ASPs have increased dramatically. Looking to the next chart, we see…

Exactly that. The last time we discussed Mindfactory data, the company was reporting an average selling price (ASP) for AMD hardware of 178€. Today, AMD’s ASPs stand at 238.89€. That’s an increase of 1.34x over April. Mindfactory reports a 1.5x increase over June. This kind of improvement is why AMD was focused on raising its ASPs and cutting costs with 7nm, to allow it to compete more effectively with Intel.

AMD’s most recent quarterly forecast doesn’t predict very strong revenue growth for the rest of the year, but it blames that weakness on a weaker-than-expected console cycle. AMD has stated that its gross margin on all 7nm products is over 50 percent. Excluding the impact of lower semicustom sales, AMD expects full year Q2019 revenue to be up 20 percent. Factor in semicustom, and total revenue growth is expected to be single-digit percentage.

Overall, the data suggests Ryzen is selling very well. Intel continues to have a bulwark with gamers who want single-threaded top-end gaming performance above all other options, but third-generation Ryzen closed the gap between both companies in that area as well.

Now Read:




10 minutes mail – Also known by names like : 10minemail, 10minutemail, 10mins email, mail 10 minutes, 10 minute e-mail, 10min mail, 10minute email or 10 minute temporary email. 10 minute email address is a disposable temporary email that self-destructed after a 10 minutes. https://tempemail.co/– is most advanced throwaway email service that helps you avoid spam and stay safe. Try tempemail and you can view content, post comments or download something