Chinese Foundry SMIC Begins 14nm Production


This site may earn affiliate commissions from the links on this page. Terms of use.

One of the longstanding trends in semiconductor manufacturing has been a steady decrease in major foundry players. Twenty years ago, when 180nm manufacturing was cutting-edge technology, there were no fewer than 28 firms deploying the node. Today, there are three companies building 7nm technology — Samsung, TSMC, and Intel. A fourth, GlobalFoundries, has since quit the cutting-edge business to focus on specialty foundry technologies like its 22nm and 12nm FDX technology.

What sometimes gets lost in this discussion, however, is the existence of a secondary group of foundry companies that do deploy new nodes — just not at the cutting-edge of technological research. China’s Semiconductor Manufacturing International Corporation (SMIC) has announced that it will begin recognizing 14nm revenue from volume production by the end of 2019, a little more than five years after Intel began shipping on this node. TSMC, Samsung, and GlobalFoundries all have extensive 14nm capability in production, as does UMC, which introduced the node in 2017.

Secondary sources for a node, like UMC and SMIC, often aren’t captured in comparative manufacturing charts like the one below because the companies in question offer these nodes after they’ve been deployed as cutting-edge products by major foundries. In many cases, they’re tapped by smaller customers with products that don’t make news headlines.

FoundryManufacturing

SMIC, however, is something of a special case. SMIC is mainland China’s largest semiconductor manufacturer and builds chips ranging from 350nm to 14nm. The company has two factories with the ability to process 300mm wafers, but while moving to 14nm is a major part of China’s long-term semiconductor initiative, SMIC isn’t expected to have much 14nm capacity any time soon. The company’s high utilization rate (~94 percent) precludes it having much additional capacity to dedicate to 14nm production. SMIC is vital to China’s long-term manufacturing goals; the country’s “Made in China 2025” plan calls for 70 percent of its domestic semiconductor demand to come from local companies by 2025. Boosting production at SMIC and bringing new product lines online is vital to that goal. That distinguishes the company from a foundry like UMC, which has generally chosen not to compete with TSMC for leading-edge process nodes. SMIC wants that business — it just can’t compete for it yet.

Dr. Zhao Haijun and Dr. Liang Mong Song, SMIC’s Co-Chief Executive Officers released a statement on the company’s 14nm ramp, saying:

FinFET research and development continues to accelerate. Our 14nm is in risk production and is expected to contribute meaningful revenue by year-end. In addition, our second-generation FinFET N+1 has already begun customer engagement. We maintain long-term and steady cooperation with customers and clutch onto the opportunities emerging from 5G, IoT, automotive and other industry trends.

Currently, only 16 percent of the semiconductors used in China are built there, but the country is adding semiconductor production capacity faster than anywhere else on Earth. The company is investing in a $10B fab that will be used for dedicated 14nm production. SMIC is already installing equipment in the completed building, so production should ramp up in that facility in 2020. Once online, the company will have significantly more 14nm capacity at its disposal (major known customers of SMIC include HiSilicon and Qualcomm). Texas Instruments has built with the company in the past (it isn’t clear if it still does), as has Broadcom. TSMC and SMIC have gone through several rounds of litigation over IP misappropriation; both cases were settled out of court with substantial payments to TSMC.

Despite this spending, analysts do not expect SMIC to immediately catch up with major foundry players from other countries; analysts told CNBC it would take a decade for the firm to close the gap with other major players. Exact dimensions on SMIC’s 14nm node are unknown. Foundry nodes are defined by the individual company not by any overarching standard organization or in reference to any specific metric. Those looking for additional information on that topic will find it here.

Now Read: 




10 minutes mail – Also known by names like : 10minemail, 10minutemail, 10mins email, mail 10 minutes, 10 minute e-mail, 10min mail, 10minute email or 10 minute temporary email. 10 minute email address is a disposable temporary email that self-destructed after a 10 minutes. https://tempemail.co/– is most advanced throwaway email service that helps you avoid spam and stay safe. Try tempemail and you can view content, post comments or download something

How Are Process Nodes Defined?


This site may earn affiliate commissions from the links on this page. Terms of use.

We talk a lot about process nodes at ExtremeTech, but we don’t often refer back to what a process node technically is. With Intel’s 10nm node moving towards production, I’ve noticed an uptick in conversations around this issue and confusion about whether TSMC and Samsung possess a manufacturing advantage over Intel (and, if they do, how large an advantage they possess).

Process nodes are typically named with a number followed by the abbreviation for nanometer: 32nm, 22nm, 14nm, etc. There is no fixed, objective relationship between any feature of the CPUSEEAMAZON_ET_135 See Amazon ET commerce and the name of the node. This was not always the case. From roughly the 1960s through the end of the 1990s, nodes were named based on their gate lengths. This chart from IEEE shows the relationship:

lithot1

For a long time, gate length (the length of the transistor gate) and half-pitch (half the distance between two identical features on a chip) matched the process node name, but the last time this was true was 1997. The half-pitch continued to match the node name for several generations but is no longer related to it in any practical sense. In fact, it’s been a very long time since our geometric scaling of processor nodes actually matched with what the curve would look like if we’d been able to continue actually shrinking feature sizes.

2010-ITRS-Summary

Well below 1nm before 2015? Pleasant fantasy.

If we’d hit the geometric scaling requirements to keep node names and actual feature sizes synchronized, we’d have plunged below 1nm manufacturing six years ago. The numbers that we use to signify each new node are just numbers that companies pick. Back in 2010, the ITRS (more on them in a moment) referred to the technology chum bucket dumped in at every node as enabling “equivalent scaling.” As we approach the end of the nanometer scale, companies may begin referring to angstroms instead of nanometers, or we may simply start using decimal points. When I started work in this industry it was much more common to see journalists refer to process nodes in microns instead of nanometers — 0.18-micron or 0.13-micron, for example, instead of 180nm or 130nm.

How the Market Fragmented

Semiconductor manufacturing involves tremendous capital expenditure and a great deal of long-term research. The average length of time between when a new technological approach is introduced in a paper and when it hits widescale commercial manufacturing is on the order of 10-15 years. Decades ago, the semiconductor industry recognized that it would be to everyone’s advantage if a general roadmap existed for node introductions and the feature sizes those nodes would target. This would allow for the broad, simultaneous development of all the pieces of the puzzle required to bring a new node to market. For many years, the ITRS — the International Technology Roadmap for Semiconductors — published a general roadmap for the industry. These roadmaps stretched over 15 years and set general targets for the semiconductor market.

SemiconductorRoadmap

Image by Wikipedia

The ITRS was published from 1998-2015. From 2013-2014, the ITRS reorganized into the ITRS 2.0, but soon recognized that the scope of its mandate — namely, to provide “the main reference into the future for university, consortia, and industry researchers to stimulate innovation in various areas of technology” required the organization to drastically expand its reach and coverage. The ITRS was retired and a new organization was formed called IRDS — International Roadmap for Devices and Systems — with a much larger mandate, covering a wider set of technologies.

This shift in scope and focus mirrors what’s been happening across the foundry industry. The reason we stopped tying gate length or half-pitch to node size is that they either stopped scaling or began scaling much more slowly. As an alternative, companies have integrated various new technologies and manufacturing approaches to allow for continued node scaling. At 40/45nm, companies like GF and TSMC introduced immersion lithography. Double-patterning was introduced at 32nm. Gate-last manufacturing was a feature of 28nm. FinFETs were introduced by Intel at 22nm and the rest of the industry at the 14/16nm node.

Companies sometimes introduce features and capabilities at different times. AMD and TSMC introduced immersion lithography at 40/45nm, but Intel waited until 32nm to use that technique, opting to roll out double-patterning first. GlobalFoundries and TSMC began using double-patterning more at 32/28nm. TSMC used gate-last construction at 28nm, while Samsung and GF used gate-first technology. But as progress has gotten slower, we’ve seen companies lean more heavily on marketing, with a greater array of defined “nodes.” Instead of waterfalling over a fairly large numerical space (90, 65, 45) companies like Samsung are launching nodes that are right on top of each other, numerically speaking:

I think you can argue that this product strategy isn’t very clear, because there’s no way to tell which process nodes are evolved variants of earlier nodes unless you have the chart handy. But a lot of the explosion in node names is basically marketing.

Why Do People Claim Intel 7nm and TSMC/Samsung 10nm Are Equivalent?

While node names are not tied to any specific feature size, and some features have stopped scaling, semiconductor manufacturers are still finding ways to improve on key metrics. The chart below is drawn from WikiChip, but it combines the known feature sizes for Intel’s 10nm node with the known feature sizes for TSMC’s and Samsung’s 7nm node. As you can see, they’re very similar:

Intel-10-Foundry-7

Image by ET, compiled from data at WikiChip

The delta 14nm / delta 10nm column shows how much each company scaled a particular feature down from its previous node. Intel and Samsung have a tighter minimum metal pitch than TSMC does, but TSMC’s high-density SRAM cells are smaller than Intel’s, likely reflecting the needs of different customers at the Taiwanese foundry. Samsung’s cells, meanwhile, are even smaller than TSMC’s. Overall, however, Intel’s 10nm process hits many of the key metrics as what both TSMC and Samsung are calling 7nm.

Individual chips may still have features that depart from these sizes due to particular design goals. The information manufacturers provide on these numbers are for a typical expected implementation on a given node, not necessarily an exact match for any specific chip.

There have been questions about how closely Intel’s 10nm+ process (used for Ice Lake) reflects these figures (which I believe were published for Cannon Lake). It’s true that the expect specifications for Intel’s 10nm node may have changed slightly, but 14nm+ was an adjustment from 14nm as well. Intel has stated that it is still targeting a 2.7x scaling factor for 10nm relative to 14nm, so we’ll hold off on any speculation about how 10nm+ may be slightly different.

Pulling It All Together

The best way to understand the meaning of a new process node is to think of it as an umbrella term. When a foundry talks about rolling out a new process node, what they are saying boils down to this:

“We have created a new manufacturing process with smaller features and tighter tolerances. In order to achieve this goal, we have integrated new manufacturing technologies. We refer to this set of new manufacturing technologies as a process node because we want an umbrella term that allows us to capture the idea of progress and improved capability.”

Any additional questions on the topic? Drop them below and I’ll answer them.

Now Read: 




10 minutes mail – Also known by names like : 10minemail, 10minutemail, 10mins email, mail 10 minutes, 10 minute e-mail, 10min mail, 10minute email or 10 minute temporary email. 10 minute email address is a disposable temporary email that self-destructed after a 10 minutes. https://tempemail.co/– is most advanced throwaway email service that helps you avoid spam and stay safe. Try tempemail and you can view content, post comments or download something