Survey: Many AMD Ryzen 3000 CPUs Don’t Hit Full Boost Clock


Overclocker Der8auer has published the results of a survey of more than 3,000 Ryzen 7nm owners who have purchased AMD’s new CPUs since they went on sale in July. Last month, reports surfaced that the Ryzen 3000 family weren’t hitting their boost clocks as well as some enthusiasts expected. Now, we have some data on exactly what those figures look like.

There are, however, two confounding variables. First, Der8auer had no way to sort out which AMD users had installed Windows 1903 and were using the most recent version of the company’s chipset drivers. AMD recommends both to ensure maximum performance and desired boost behavior. Der8auer acknowledges this but believes the onus is on AMD to communicate with end-users regarding the need to use certain Windows versions to achieve maximum performance.

Second, there’s the fact that surveys like this tend to be self-selecting. It’s possible that only the subset of end-users who aren’t seeing the performance they desire will respond in such a survey. Der8auer acknowledges this as well, calling it a very valid point, but believes that his overall viewing community is generally pro-AMD and favorably inclined towards the smaller CPU manufacturer. The full video can be seen below; we’ve excerpted some of the graphs for discussion.

Der8auer went over the data from the survey thoroughly in order to throw out results that didn’t make sense or were obviously submitted in bad faith. He compiled data on the 3600, 3600X, 3700X, 3800X, and 3900X.SEEAMAZON_ET_135 See Amazon ET commerce Clock distributions were measured at up to two deviations from the mean. Maximum boost clock was tested using Cinebench R15’s single-threaded test, as per AMD’s recommendation.

Der8auer-3600

Data and chart by Der8auer. Click to enlarge

In the case of the Ryzen 7 3600, 49.8 percent of CPUs hit their boost clock of 4.2GHz, as shown above. As clocks rise, however, the number of CPUs that can hit their boost clock drops. Just 9.8 percent of 3600X CPUs hit their 4.4GHz. The 3700X’s chart is shown below for comparison:

Data and chart by Der8auer. Click to enlarge

The majority of 3700X CPUs are capable of hitting 4.375GHz, but the 4.4GHz boost clock is a tougher leap. The 3800X does improve on these figures, with 26.7 percent of CPUs hitting boost clock. This seems to mirror what we’ve heard from other sources, which have implied that the 3800X is a better overclocker than the 3700X. The 3900X struggles more, however, with just 5.6 percent of CPUs hitting their full boost clock.

We can assume that at least some of the people who participated in this study did not have Windows 10 1903 or updated AMD drivers installed, but AMD users had the most reason to install those updates in the first place, which should help limit the impact of the confounding variable.

The Ambiguous Meaning of ‘Up To’

Following his analysis of the results, Der8auer makes it clear that he still recommends AMD’s 7nm Ryzen CPUs with comments like “I absolutely recommend buying these CPUs.” There’s no ambiguity in his statements and none in our performance review. AMD’s 7nm Ryzen CPUs are excellent. But an excellent product can still have issues that need to be discussed. So let’s talk about CPU clocks.

The entire reason that Intel (who debuted the capability) launched Turbo Boost as a product feature was to give itself leeway when it came to CPU clocks. At first, CPUs with “Turbo Boost” simply appeared to treat the higher, optional frequency as their effective target frequency even when under 100 percent load. This is no longer true, for multiple reasons. CPUs from AMD and Intel will sometimes run at lower clocks depending on the mix of AVX instructions. Top-end CPUs like the Core i9-9900K may throttle back substantially when under full load for a sustained period of time (20-30 seconds) if the motherboard is configured to use Intel default power settings.

In other realms, like smartphones, it is not necessarily unusual for a device to never run at maximum clock. Smartphone vendors don’t advertise base clocks at all and don’t provide any information about sustained SoC clock under load. Oftentimes it is left to reviewers to typify device behavior based on post-launch analysis. But CPUs from both Intel and AMD have typically been viewed as at least theoretically being willing capable of hitting boost clock in some circumstances.

The reason I say that view is “theoretical” is that we see a lot of variation in CPU behavior, even over the course of a single review cycle. It’s common for UEFI updates to arrive after our testing has already begun. Oftentimes, those updated UEFIs specifically fix issues with clocking. We correspond with various motherboard manufacturers to tell them what we’ve observed and we update platforms throughout the review to make certain power behavior is appropriate and that boards are working as intended. When checking overall performance, however, we tend to compare benchmark results against manufacturer expectations as opposed to strictly focusing on clock speed (performance, after all, is what we are attempting to measure). If performance is oddly low or high, CPU and RAM clocks are the first place to check.

It’s not unusual, however, to be plus-or-minus 2-3 percent relative to either the manufacturer or our fellow reviewers, and occasional excursions of 5-7 percent may not be extraordinary if the benchmark is known for producing a wider spread of scores. Some tests are also more sensitive than others to RAM timing, SSD speed, or a host of other factors.

Now, consider Der8auer’s data on the Ryzen 9 3900X:

Der8auer-3900X

Image and data by Der8auer. Click to enlarge

Just 5 percent of the CPUs in the batch are capable of hitting 4.6GHz. But a CPU clocked at 4.6GHz is just 2 percent faster than a CPU clocking in at 4.5GHz. A 2 percent gap between two products is close enough that we call it an effective tie. If you were to evaluate CPUs strictly on the basis of performance, with a reasonable margin of say, 3 percent, you’d wind up with an “acceptable” clock range of 4,462MHz – 4,738MHz (assuming a 1:1 relationship between CPU clock and performance). And if you allow for that variance in the graphs above, a significantly larger percentage — though no, not all — of AMD CPUs “qualify” as effectively reaching their top clock.

On the other hand, 4.5GHz or below is factually not 4.6GHz. There are at least two meaningfully different ways to interpret the meaning of “up to” in this context. Does “up to X.XGHz” mean that the CPU will hit its boost clock some of the time, under certain circumstances? Or does it mean that certain CPUs will be able to hit these boost frequencies, but that you won’t know if you have one or not? And how much does that distinction matter, if the overall performance of the part matches the expected performance that the end-user will receive?

Keep in mind that one thing these results don’t tell us is what overall performance looks like across the entire spread of Ryzen 7 CPUs. Simply knowing the highest boost clock that the CPU hits doesn’t show us how long it sustained that clock. A CPU that holds a steady clock of 4.5GHz from start to finish will outperform a CPU that bursts to 4.6GHz for one second and drops to 4.4GHz to finish the workload. Both of these behaviors are possible under an “up to” model.

Manufacturers and Consumers May See This Issue Differently

While I don’t want to rain on his parade or upcoming article, we’ve spent the last few weeks at ET troubleshooting a laptop that my colleague David Cardinal recently bought. Specifically, we’ve been trying to understand its behavior under load when both the CPU and GPU are simultaneously in-use. Without giving anything away about that upcoming story, let me say this: The process has been a journey into just how complicated thermal management is now between various components.

Manufacturers, I think, increasingly look at power consumption and clock speed as a balancing act in which performance and power are allocated to the components where they’re needed and throttled back everywhere else. Increased variability is the order of the day. What I suspect AMD has done, in this case, is set a performance standard that it expects its CPUs to deliver rather than a specific clock frequency target. If I had to guess at why the company has done this, I would guess that it’s because of the intrinsic difficulties of maintaining high clock speeds at lower process nodes. AMD likely chose to push the envelope on its clock targets because it made the CPUs compare better against their Intel equivalents as far as maximum clock speeds were concerned. Any negative response from critics would be muted by the fact that these new CPUs deliver marked benefits over both previous-generation Ryzen CPUs and their Intel equivalents at equal price points.

Was that the right call? I’m not sure. This is a situation where I genuinely see both sides of the issue. The Ryzen 3000 family delivers excellent performance. But even after allowing for variation caused by Windows version, driver updates, or UEFI issues on the part of the manufacturer, we don’t see as many AMD CPUs hitting their maximum boost clocks as we would expect, and the higher-end CPUs with higher boost clocks have more issues than lower-end chips with lower clocks. AMD’s claims of getting more frequency out of TSMC 7nm as compared with GF 12/14nm seem a bit suspect at this point. The company absolutely delivered the performance gains we wanted, and the power improvements on the X470 chipset are also very good, but the clocking situation was not detailed the way it should have been at launch.

There are rumors that AMD supposedly changed boost behavior with recent AGESA versions. Asus employee Shamino wrote:

i have not tested a newer version of AGESA that changes the current state of 1003 boost, not even 1004. if i do know of changes, i will specifically state this. They were being too aggressive with the boost previously, the current boost behavior is more in line with their confidence in long term reliability and i have not heard of any changes to this stance, tho i have heard of a ‘more customizable’ version in the future.

I have no specific knowledge of this situation, but this would surprise me. First, reliability models are typically hammered out long before production. Companies don’t make major changes post-launch save in exceptional circumstances, because there is no way to ensure that the updated firmware will reach the products that it needs to reach. When this happens, it’s major news. Remember when AMD had a TLB bug in Phenom? Second, AMD’s use of Adaptive Frequency and Voltage Scaling is specifically designed to adjust the CPU voltage internally to ensure clock targets are hit, limiting the impact of variability and keeping the CPU inside the sweet spot for clock.

I’m not saying that AMD would never make an adjustment to AGESA that impacted clocking. But the idea that the company discovered a critical reliability issue that required it to make a subtle change that reduced clock by a mere handful of MHz in order to protect long-term reliability doesn’t immediately square with my understanding of how CPUs are designed, binned and tested. We have reached out to AMD for additional information.

I’m still confident and comfortable recommending the Ryzen 3000 family because I’ve spent a significant amount of time with these chips and seen how fast they are. But AMD’s “up to” boost clocks are also more tenuous than we initially knew. It doesn’t change our expectation of the part’s overall performance, but the company appears to have decided to interpret “up to” differently this cycle than in previous product launches. That shift should have been communicated. Going forward, we will examine both Intel and AMD clock behavior more closely as a component of our review coverage.

Now Read:




10 minutes mail – Also known by names like : 10minemail, 10minutemail, 10mins email, mail 10 minutes, 10 minute e-mail, 10min mail, 10minute email or 10 minute temporary email. 10 minute email address is a disposable temporary email that self-destructed after a 10 minutes. https://tempemail.co/– is most advanced throwaway email service that helps you avoid spam and stay safe. Try tempemail and you can view content, post comments or download something

AMD Ryzen 7nm CPUs May Not Hit Maximum Boost Frequency on All Cores


This site may earn affiliate commissions from the links on this page. Terms of use.

AMD’s third-generation Ryzen processors have been a massive hit for the company by all reports, with excellent performance relative to Intel’s Core CPUs. There have, however, been a few questions around yield, overclocking, and boost frequencies. CPU overclocks on Ryzen are notably low, and some enthusiasts have noticed a limited number of cores on their CPUs hit the targeted boost frequencies.

Tom’s Hardware has done a significant deep-dive into this issue and came away with a number of key findings. In the past, AMD CPUsSEEAMAZON_ET_135 See Amazon ET commerce were capable of hitting their top-rated boost frequencies on any CPU cores. Intel chips are designed similarly. With Ryzen 3000, apparently only up to one core needs to be capable of hitting its maximum or near-maximum boost frequency. The scheduler updates baked into Windows 10 were said to speed power state transitions (which they do), but they also assign workloads specifically to the fastest cores capable of hitting a given clock.

These findings may explain why all-core overclocking headroom on these new Ryzen 7 processors is so low. On the Ryzen 7 3600X, only one CPU core proved capable of hitting 4.35GHz, for example, with other cores on the same chip boosting to 75-100MHz lower. AMD has not released exact specs for what frequencies its cores need to be able to hit to satisfy its own internal metrics for launch, which means we don’t really “know” which frequencies these CPU cores will operate at. This is definitely a change from previous parts, where all cores could be more-or-less assumed to be capable of hitting the same boost frequencies, and it may have implications for overclockers — but it doesn’t really change my opinion on AMD’s 7nm Ryzen CPUs. If anything, I suspect it’s a harbinger of where the industry is headed in the future.

Building Faster Silicon Today Means Working Smarter, Not Harder

One of the topics I’ve covered repeatedly at ExtremeTech is the difficulty of scaling either IPC (instructions-per-clock, a measure of CPU efficiency) or clock speed as process technology continues to shrink. From December 2018 – June 2019, I wrote a number of articles pushing back against various AMD fans who insisted the company would use 7nm to make huge clock leaps above Intel. When we met AMD at E3 2019, company engineers told us point-blank that they expected no clock improvements at 7nm whatsoever initially, and were very pleased to be able to improve clocks modestly in the final design.

One of the major difficulties semiconductor foundries are dealing with on 7nm and lower nodes is increased variability. Increased variation in parts means the chance of getting a wider “spread” on which cores are capable of running at specific frequency and voltage settings. AMD adapted Adaptive Voltage and Frequency Scaling back with Carrizo in part because AVFS can be used to control for process variation by more precisely matching CPU internal voltages with the specific requirements of the processor. Working with Microsoft to ensure Windows runs workloads on the highest-clocked CPU core isn’t just a good idea; it’s going to be a necessary method of extracting maximum performance in the future.

Intel’s decision to introduce Turbo Boost with Sandy Bridge back in 2011 was one of the smartest moves the company ever made. Intel’s engineers accurately forecast it was going to become increasingly difficult to guarantee maximum clocks under all circumstances. There’s no arguing what AMD is doing here represents a fundamental shift from the company’s approach in years past, but it’s one I strongly believe we’re going to see more companies embracing in the future. Higher silicon variability is going to demand a response from software. The entire reason the industry has shifted towards chiplets is that building entire dies on 7nm is seen as a fool’s errand, given the way cost scales with large die sizes, as the slide below shows.

Why move to AVFS? To decrease variability. Why move to chiplets? To cut manufacturing costs and improve yields overall. Why change Windows scheduling to be aware of per-core boost frequencies? To ensure end-users receive the full measure of performance they pay for. While it’s true Intel CPUs may be able to hit boost frequencies on any core, that doesn’t mean this state of affairs was objectively better for the end-user. Windows’ typical core-shuffling is not some unalloyed good, a fact Paul Alcorn notes in his article. “Typically we would see more interspersed frequency jumps among cores,” Alcorn writes, “largely due to the Windows scheduler’s irritating and seemingly irrational tendency to allocate threads into different cores on a whim.” Meanwhile, we know the boost frequency Intel CPUs will practically hold still depends directly on how many CPU cores are being loaded. The fact that all CPU cores can reach higher clocks does not necessarily benefit the end-user in any way unless said user is overclocking — and statistically, most computer users don’t.

But because it’s getting harder to eke out frequency boosts and performance improvements, manufacturers are investing in technologies that tap the reservoir of performance in any given CPU solely for their own use. This is why high-end overclocking is slowly dying and has been for at least the past seven years. AMD and Intel are getting better and better at making limited frequency headroom in their products available to end-users without overclocking because overclocking these CPUs in the conventional fashion blows their power curve out so severely. It wouldn’t surprise me to discover AMD went with this method of clocking because it improved performance more at lower power compared with launching lower-clocked chips with a more conventional all-core boost arrangement.

The old rules of process node transitions and silicon designs have changed. That’s the bottom line. I’m confident we’ll see Intel deploying advanced tactics of its own to deal with these concerns in the future because there is zero evidence to suggest these issues are unique to AMD or TSMC. AMD’s adoption of AVFS, the rising use of chiplets across the industry, the lower expected clocks at 7nm that were turned into a small gain thanks to clever engineering — all of these issues point in the same direction. Companies will undoubtedly develop their own particular solutions, but everyone is grappling with the same fundamental set of problems.

Good Communication is Key

AMD, to its credit, did tell users they needed to be running the latest chipset driver and the Windows 1903 update to take advantage of the new scheduler. Implied in that rhetoric was not doing so would prevent you from seeing the full impact of third-generation Ryzen’s improved performance. I do agree the company should have disclosed this new binning strategy to the technical press at E3, so we could detail it during the actual review.

But does this change my overall evaluation of third-generation Ryzen? No. Not in any fashion. The work THG has done to explore this issue is quite thorough, but based on the reading I’ve done on the evolution of process technology in modern manufacturing, I come down firmly on the side of this being a good thing. It’s the extension of the same trend that led ARM to invent big.Little — namely, the idea that the OS needs to be more tightly coupled to the underlying hardware, with a greater awareness of what CPU cores should be used for which workloads in order to maximize performance and minimize power consumption.

According to AMD, roughly 25 percent of the performance improvements of the past decade have come from better compilers and improved power management. That percentage will likely be even larger 10 years from now. Power consumption at both idle and load is now the largest enemy of improved silicon performance, and variability in silicon process is a major cause of power consumption. Improving performance in the future is going to rely on different tools than the ones we’ve used for the past few decades, and one of the likely consequences of that push is the end of overclocking. Manufacturers can’t afford to leave 10, 20, 30 percent performance margins on the table any longer. Those margins represent a significant percentage of the total improvements they can offer.

Do these findings have implications for the currently limited availability on the Ryzen 9 3900X? We don’t know. Certainly, it’s possible the two are connected and that AMD is having trouble getting yield on the chip. Ultimately, I stand by what I said in our article on AMD CPUSEEAMAZON_ET_135 See Amazon ET commerce availability earlier today — we’ll give the company a little more time to get product into market and revisit the topic in a few more weeks. But the CPU’s performance is excellent. Its power consumption, particularly if paired with an X470 motherboard, is excellent. We’re still working on future Ryzen articles and have been working with these CPUs for several weeks. The performance and overall power characteristics are fundamentally strong, and while the THG findings are quite interesting for what they say about AMD’s overall strategy going forward and what I believe is the general increase in variability in semiconductors as a whole, I view them as broadly confirming the direction the industry is moving in. Dealing with intrinsically higher silicon variability will be one of the major challenges of the 2020s.

I hesitate to bring Intel into this conversation at all, because we haven’t even seen the company’s latest iteration of its 10nm process yet, but it’s surely no accident the company’s upcoming mobile processors have sharply reduced maximum Turbo Boosts (4.1GHz for Ice Lake, compared to 4.8GHz for 14nm Whiskey Lake). Some of that may be explained by the wider graphics core that’s built into Gen 11, but Intel forecast from the beginning that 14nm++ would be a better node for high-frequency chips than its initial 10nm process. That doesn’t mean Intel has adopted AMD’s new clocking method, but it does show the company is grappling with some of these same issues around frequency, variation, and power consumption, and working to find its own ideal balance.

The challenges are getting tougher. There are no more easy wins. The interplay between software and hardware is going to change in the future because the alternative — simply giving up and going home — isn’t a tenable one. That may have trickle-down effects that impact other aspects of computing, including overclockers and enthusiasts. But it doesn’t change the fact, in this reviewer’s opinion, that the Ryzen 7 3000 family are an excellent set of CPUs.

Now Read:




10 minutes mail – Also known by names like : 10minemail, 10minutemail, 10mins email, mail 10 minutes, 10 minute e-mail, 10min mail, 10minute email or 10 minute temporary email. 10 minute email address is a disposable temporary email that self-destructed after a 10 minutes. https://tempemail.co/– is most advanced throwaway email service that helps you avoid spam and stay safe. Try tempemail and you can view content, post comments or download something