Intel Core i9-9900KS Ships in Oct., Cascade Lake-X Nearly Doubles Performance Per Dollar

This site may earn affiliate commissions from the links on this page. Terms of use.

Intel made some product announcements at a pre-IFA event in Berlin this week, including news on the Core i9-9900KS that it announced earlier this summer and an upcoming product refresh for its Core X family. Intel has been pushed onto its proverbial heels by AMD’s 7nm onslaught, and it has yet to respond to those products in a significant way. These new parts should help do that, albeit at the high end of the market.

First, there’s the Core i9-9900KS. This CPU is a specially-binned Core i9-9900K, with the ability to hit 5GHz on all eight CPU cores, and a 4GHz base clock. That’s a 1.1x improvement over base clock on the 9900K, but the impact of the all-core 5GHz boost is harder to estimate. A sustained all-core 5GHz clock speed would be substantially higher than the Core i9-9900K we have here at ET — but Intel CPUsSEEAMAZON_ET_135 See Amazon ET commerce no longer hold their full clocks under sustained load. Our Core i9-9900K will turbo up to high clocks for 20-30 seconds, depending on the workload, before falling back to speeds in the lower 4GHz range when run on our Asus Z390 motherboard.

A faster Core i9 will undoubtedly improve Intel’s positioning against the Ryzen 7 and Ryzen 9 family,SEEAMAZON_ET_135 See Amazon ET commerce but even a chip that could hold an all-core 5GHz boost won’t catch the 12-core/24-thread Ryzen 9 3900X in most multi-threaded applications that can scale up to 12 cores. The gap between the two parts is too large to be closed in such a manner.

What the 9900KS will do for Intel, however, is give it a little more room to maneuver in gaming performance, which is where the company is making its stand. On the desktop side of things, Intel is facing a genuinely tough competitive situation, and even the advent of 10-core desktop CPUs may not solve the problem.

Cascade Lake May Meaningfully Respond to Threadripper

For the past two years, AMD has hammered Intel with high-performing, (relatively) low-cost workstation processors. Even though Intel’s Skylake X CPUs have often punched above their weight class compared with the Core family, AMD’s willingness to shove tons of cores into its chips has secured it the lead as far as performance/dollar, as well as the absolute performance lead in many well-threaded applications.

Intel may intend to challenge this in a far more serious way this year. The company showed the following slide at IFA:

The implication of this slide is that Intel will launch new Cascade X CPUs at substantially lower per-core prices than it has previously offered. We say “implication,” however, because technically this is a slide of performance per dollar, not price. Imagine two hypothetical CPUs, one with a price of $1,000 and performance of 1x, while the other chip costs $1,500 and has 2x the performance of the first chip. The second chip is 1.5x more expensive than the first but offers 1.33x more performance/dollar.

With AMD potentially eyeing Threadripper CPUs with up to 64 cores, however, Intel may not feel it has a choice. We haven’t heard from AMD on this point yet, so much is up in the air. There seems to be a battle brewing in these segments — hopefully, Intel will bring a much more price-competitive series of parts to market.

Now Read:

10 minutes mail – Also known by names like : 10minemail, 10minutemail, 10mins email, mail 10 minutes, 10 minute e-mail, 10min mail, 10minute email or 10 minute temporary email. 10 minute email address is a disposable temporary email that self-destructed after a 10 minutes.– is most advanced throwaway email service that helps you avoid spam and stay safe. Try tempemail and you can view content, post comments or download something

Leak Points to Intel Comet Lake Desktops Arriving in 2020: 10 Cores, New Socket

This site may earn affiliate commissions from the links on this page. Terms of use.

We’ve heard for a while that Intel might respond to AMD’s 7nm onslaught with higher core counts on desktop processors. A new leak suggests that’s exactly what the company will do, with a new chipset supporting up to 10-core CPUs built on the company’s mature 14nm process. This will supposedly require a new CPU socket, as Intel is increasing the power delivery and capability of its desktop motherboards to compensate for the higher power requirements in a 10-core chip.

The new socket is supposedly LGA 1200 and the top-end chips will offer 10C/20T configurations if rumors are to be believed. TDP is also finally rising, up to 125W. This last is something of an interesting point. Intel CPU power consumption currently has little relation to TDP if you allow the CPU to boost; TDP is measured at base clock, not boost clock. Intel may need to expand TDP to deal with adding more CPU cores, but in the past, it has kept its CPUsSEEAMAZON_ET_135 See Amazon ET commerce in the same TDP brackets by cutting base clock.


Image by XFastest

Our guess is that Intel is raising TDP because it doesn’t want to do this again. Cutting its base clocks further to remain within the old 95W TDP bracket with 10 cores instead of eight is probably possible, but runs the risk of creating negative comparisons against previous generation parts or AMD hardware. Intel reduced base clock speed when it moved from the Core i7-8700K to the Core i9-9900K — the 9900K has a base clock of 3.6GHz, while the 8700K is 3.7GHz. The old 7700K had a base clock of 4.2GHz, though obviously vastly inferior performance overall.

The relatively low base clock may not have been much of a concern when AMD’s own Ryzen 7 base clocks were also in the 3.6 – 3.7GHz range, but AMD adjusted its own clock ranges slightly for 7nm. The 3700X has a base clock of 3.7GHz, while the Ryzen 3800X is 3.9GHz base and the 3900X is a 3.8GHz chip. Intel may want to bring clocks up slightly to make certain it matches on base, and the only way to do that is to nudge the TDP higher.

Image by XFastest

Supposedly the new 400-series adds another 49 pins to hit LGA1200, with the extra pins used for power delivery. There would be a few new features, like integrated 802.11ax support and presumably an easier method of integrating Thunderbolt 3, similar to what we’ve seen in mobile. 65W and 35W CPUs would still be supported (and released) on this latest 14nm revision, it’s just the enthusiast TDP bracket that would stretch up to 125W. Intel would likely try to keep the boost clock as high as possible, but I don’t want to speculate on what that will be.

Catching AMD Wouldn’t Be the Goal

Anyone who has paid attention to relative standings between AMD and Intel has already realized that a 10-core Comet Lake isn’t going to match AMD in most performance areas. The 16-core Ryzen 9 3950X is on its way, and we’ve already seen what happens when a 10-core Intel HEDT CPU takes on a 16-core AMD Threadripper: The 10-core CPU loses. Mostly, it loses by a lot.

But while this might sound faintly absurd, beating AMD in absolute multi-core performance probably isn’t the goal here. Both companies are working towards their respective strengths: For AMD, that means emphasizing multi-core while working to improve single-core, where Intel still holds a narrow advantage in some games at 1080p. For Intel, that means attempting to improve single-core while competing more effectively in multi-core. Bumping up to 10 cores and raising base clock via TDP increase probably helps the company achieve that. It’s going to take more than +2 cores to put Intel seriously back in the multi-threading game, and the company knows that.

The rumors of a 10-core Comet Lake are strong enough and have been running around for long enough that I think they’re pretty solid. We suspect this generation will see the return of Hyper-Threading as well to boost Intel’s competitive standing against AMD at lower price brackets. Without any price information, we obviously can’t opine on how the two companies will stack up, but Intel has a history of introducing better price/performance ratios at major product launches. This suggests we’ll see the company adjust its core count/dollar strategy at the next major launch.

Now Read:

10 minutes mail – Also known by names like : 10minemail, 10minutemail, 10mins email, mail 10 minutes, 10 minute e-mail, 10min mail, 10minute email or 10 minute temporary email. 10 minute email address is a disposable temporary email that self-destructed after a 10 minutes.– is most advanced throwaway email service that helps you avoid spam and stay safe. Try tempemail and you can view content, post comments or download something

Intel Unveils 6-Core 10th Gen Mobile CPUs, but Power Limits May Throttle Chips

This site may earn affiliate commissions from the links on this page. Terms of use.

Intel has announced yet another tranche of 10th Generation mobile chips, this time based on 14nm. This is the third Intel 10th Generation announcement that the company has made recently and the first to show us how 10nm and 14nm products will live side-by-side in the same product families. The headline news here is that Intel is bumping its maximum mobile CPU core count to 6C/12T in a 15W power envelope, up from 4C/8T. The 14nm CPUsSEEAMAZON_ET_135 See Amazon ET commerce in the 10th Generation family are Comet Lake, paired up with Ice Lake to fill out the field.

On paper, this shift should be an excellent move for Intel. When the company launched 8th Generation chips, it delivered a significant overall performance improvement. Our initial concerns that high-clocked dual-cores might prove to be better options than lower-clocked quads were groundless; the low base clocks on 8th Generation mobile parts didn’t prevent them from delivering excellent gains in comparison.

There’s good reason to think that’s not the case any longer. Here’s one of the official Intel slides predicting the performance improvements customers who buy a new, 10th Generation CPU like the Core i7-10710U (that’s the six-core variant) can expect:

These are significant gains for a single generation of product. Up to 16 percent better overall performance compared with Coffee Lake, 41 percent better productivity in Office 365, and the same battery life? Not bad. But let’s check the fine print.

Click to enlarge.

This is from Intel’s official disclaimers page. Each numbered entry — 1, 2, 3, — deals with one of the claims we’ve just shown you. I’ve highlighted the listed TDP for each CPU in each entry. Note that #1 and #2 — the two performance claims — deal with two very different system configurations. In both cases, the six-core Core i7-10710U has been configured to run at a 25W TDP, while the Core i7-8565U has been handicapped to a 15W TDP.

The third data point, however, does not show this configuration. Here, the two chips are both running in a 15W envelope. The problem here is that users typically don’t have access to an OEM or Intel-provided method of switching between operating modes. That’s a decision that the laptopSEEAMAZON_ET_135 See Amazon ET commerce manufacturer makes. You can sometimes use third-party utilities or the Intel Extreme Tuning utility to tweak CPU configurations, but you can’t just flip between 15W and 25W configurations. Whatever configuration your laptop manufacturer used is the configuration you are stuck with, and they don’t typically advertise this information.

Intel Didn’t Do This for the 8th Gen Launch

We compared backward against the 2017 8th Generation launch to see how Intel had handled messaging in that situation. There’s a similar slide for the 8th Gen family comparing backward against the 7th Gen family.

We see a similar (though significantly larger) improvement and a similar footnote. Where’s that take us?

Nowhere good. In 2017, when Intel compared performance between the Core i7-8550U and the Core i7-7500U, it didn’t need to futz with TDP values in order to make its performance figures align. The comparison was performed with 15W allocated for both CPUs.

There’s only one reason we can think of for Intel to do this: power consumption. While TDP ratings are not equivalent to total CPU power consumption and should not be read that way, giving a CPU more TDP headroom allows it to draw more power. When reviewers spent time with Ice Lake earlier this month, we specifically noted how giving a CPU more TDP headroom allows it to run faster, as shown below:


We don’t know how much faster the Core i7-10710U is when running in a 25W TDP versus a 15W TDP. What matters is that Intel is misrepresenting the type of comparison it’s making on its 10th Generation launch slides. Comparing laptop performance in two different TDP ranges for your performance metrics, only to flip and compare what amounts to a fundamentally different machine configuration for battery life is disingenuous. The switch between 15W and 25W operating modes may not seem like a big deal, but that’s not a switch that an end-user can throw. When you buy one of these chips, you’ll be getting either the higher-performance 25W version or the lower-performing 15W flavor, and OEMs don’t typically communicate the ultra-fine points of their power management strategies or SKU selections.

The final reason to suspect that TDP is limiting CPU performance in this case? The gains aren’t large enough. Moving to a six-core CPU from a quad may not be as large an improvement as the jump from 2C/4T to 4C/8T, but it should still be worth 1.5x baseline improvement, and there are plenty of benchmarks that will show this type of gain — if the chip isn’t butting up against thermal limits already.

Meet the (Rest) of the 10th Generation 14nm Family

Intel is launching a full suite of U- and Y-class parts, as shown below:


Outside of the Core i7-10710U, improvements are kind of difficult to come by. The Core i7-105100U is a 1.8GHz base, 4.9GHz single-core Turbo, 4.3GHz all-core boost. Intel didn’t disclose its all-core boost frequencies for chips like the Core i7-8665U, but that CPU is a 1.9GHz base / 4.8GHz boost CPU. The total number of EUs for graphics and the graphics frequency are identical between the two parts. The Core i7-10710U does support LPDDR4X-2933, LPDDR3-2133, or DDR4-2666, while the Core i7-8665U only supports DDR4-2400 or LPDDR3-2133, but these improvements are going to be of limited value to users. Intel CPUs aren’t very RAM bandwidth-bound.


These chips will also carry the other 10th generation improvements Intel is shipping, like faster Wi-Fi and support for Intel’s Dynamic Tuning technology. They’ll collectively target the 7W envelope (Intel’s 10nm 10th Gen parts don’t fit into anything below 9W). They offer up to 4.9GHz of maximum frequency compared with 4.1GHz for 10nm Ice Lake CPUs. According to Intel, the U-series and Y-series are intended for customers that want top-notch CPU performance but care less about graphics on the whole. Outside of the single new 6-core SKU, all of the new chips are quad-core parts as well.

Our read on the situation is this: Intel is struggling to contain a resurgent AMD by doubling down on the one market where AMD has always been weakest: mobile. 10nm had to be in market by holidays 2020 for a host of reasons, but Intel isn’t manufacturing enough of the chips to just commit to a top-to-bottom 10nm refresh in that segment. So now we have a mix of 14nm and 10nm parts to address overall market needs, with the 10nm CPUs offering higher IPC and a dramatically improved graphics core, but significantly lower frequency. 14nm chips will theoretically anchor the product in-market with a “halo” six-core part.

But this time around, the situation is different. When Intel moved from 2C/4T to 4C/8T CPUs in mobile, it had held the line on 2C/4T configurations for multiple product cycles. Effectively, it had thermal headroom to spare. This time around, the company has telegraphed that its six-core 15W CPU is gasping for metaphorical air. We don’t know what the real improvements are between the Core i7-8565U and the Core i7-10710U, but we can bet they’re smaller than the 16 percent and 41 percent that Intel quoted. And if by some chance you do get a 25W laptop with a Core i7-10710U in it, it’s not going to offer commensurate battery life to that same configuration with a 15W CPU unless the OEM outfits it with a significantly heftier battery — which means you might get more cores and equivalent battery life, but you’ll pay for it with additional weight.

Now Read:

10 minutes mail – Also known by names like : 10minemail, 10minutemail, 10mins email, mail 10 minutes, 10 minute e-mail, 10min mail, 10minute email or 10 minute temporary email. 10 minute email address is a disposable temporary email that self-destructed after a 10 minutes.– is most advanced throwaway email service that helps you avoid spam and stay safe. Try tempemail and you can view content, post comments or download something