Razer’s Upcoming Intel-Powered Switch 13 Will Offer 25W Switchable TDP


This site may earn affiliate commissions from the links on this page. Terms of use.

When Intel took the lid off of Ice Lake, we noted that the performance data for the CPU was complex. On the GPU side of things, Ice Lake is a huge leap forward, with substantially higher performance than anything we’ve seen from Intel integrated graphics before. The CPU, however, was a rather mixed bag. When restrained to a 15W TDP, Ice Lake CPUs weren’t necessarily faster than the Coffee Lake chips they are intended to replace and were often somewhat slower. If you give the CPU additional headroom, this problem resolves — but of course, giving the chip more power to play with has a negative impact on heat and battery life.

When Intel invited reviewers to test Ice Lake, the test systems it offered had a toggle switch to flip from 15W to 25W envelopes. That’s how PCMag and other publications were able to test the laptop in both modes, as shown below:

Users don’t usually have this kind of option. TDP ranges are typically pre-defined by the OEM and are not something that the end user can modify, for obvious reasons — cranking up laptop TDP is a good way to overheat the system if you don’t know what you’re doing and if the laptop isn’t specifically designed to run at the higher power level. To the best of our knowledge (until today), no consumer laptop could actually change its TDP values on the fly. At the Ice Lake testing event, Intel told reviewers that the Ice Lake laptops sold at retail wouldn’t have this option, either.

There appears to be at least one exception to this rule, however. The Razer Blade 13 will have an adjustable TDP that can be configured through Razer’s Synapse software. Supposedly this capability has always existed, going back to the original Razer Blade. If this is true, it’s not something the company previously seems to have highlighted — Google doesn’t bring up any results referring to an adjustable TDP on previous versions of the Razer Blade,SEEAMAZON_ET_135 See Amazon ET commerce unless you count the fact that the laptop would down-clock under load in some circumstances. To be clear, the ability to run the CPU in a lower power envelope under load isn’t the same thing as being able to voluntarily put it in a higher TDP mode and operate it with additional power headroom.

Given that Intel had already told reviewers not to expect adjustable TDP ranges as a major laptop feature, this raises the question: Is this specific to Razer, or will we see more laptop manufacturers taking advantage of these new capabilities? Will Intel make adjustable TDPs a feature that high-end customers can shell out for if they want the option?

Razer’s website for the new Blade states that the system will use a 25W Ice Lake CPU, but does not mention anything about the system being adjustable within a 15W versus a 25W power envelope.

Now Read:




10 minutes mail – Also known by names like : 10minemail, 10minutemail, 10mins email, mail 10 minutes, 10 minute e-mail, 10min mail, 10minute email or 10 minute temporary email. 10 minute email address is a disposable temporary email that self-destructed after a 10 minutes. https://tempemail.co/– is most advanced throwaway email service that helps you avoid spam and stay safe. Try tempemail and you can view content, post comments or download something

Leak Points to Intel Comet Lake Desktops Arriving in 2020: 10 Cores, New Socket


This site may earn affiliate commissions from the links on this page. Terms of use.

We’ve heard for a while that Intel might respond to AMD’s 7nm onslaught with higher core counts on desktop processors. A new leak suggests that’s exactly what the company will do, with a new chipset supporting up to 10-core CPUs built on the company’s mature 14nm process. This will supposedly require a new CPU socket, as Intel is increasing the power delivery and capability of its desktop motherboards to compensate for the higher power requirements in a 10-core chip.

The new socket is supposedly LGA 1200 and the top-end chips will offer 10C/20T configurations if rumors are to be believed. TDP is also finally rising, up to 125W. This last is something of an interesting point. Intel CPU power consumption currently has little relation to TDP if you allow the CPU to boost; TDP is measured at base clock, not boost clock. Intel may need to expand TDP to deal with adding more CPU cores, but in the past, it has kept its CPUsSEEAMAZON_ET_135 See Amazon ET commerce in the same TDP brackets by cutting base clock.

intel-comet-lake-lga-1159-1200-news-again-4

Image by XFastest

Our guess is that Intel is raising TDP because it doesn’t want to do this again. Cutting its base clocks further to remain within the old 95W TDP bracket with 10 cores instead of eight is probably possible, but runs the risk of creating negative comparisons against previous generation parts or AMD hardware. Intel reduced base clock speed when it moved from the Core i7-8700K to the Core i9-9900K — the 9900K has a base clock of 3.6GHz, while the 8700K is 3.7GHz. The old 7700K had a base clock of 4.2GHz, though obviously vastly inferior performance overall.

The relatively low base clock may not have been much of a concern when AMD’s own Ryzen 7 base clocks were also in the 3.6 – 3.7GHz range, but AMD adjusted its own clock ranges slightly for 7nm. The 3700X has a base clock of 3.7GHz, while the Ryzen 3800X is 3.9GHz base and the 3900X is a 3.8GHz chip. Intel may want to bring clocks up slightly to make certain it matches on base, and the only way to do that is to nudge the TDP higher.

Image by XFastest

Supposedly the new 400-series adds another 49 pins to hit LGA1200, with the extra pins used for power delivery. There would be a few new features, like integrated 802.11ax support and presumably an easier method of integrating Thunderbolt 3, similar to what we’ve seen in mobile. 65W and 35W CPUs would still be supported (and released) on this latest 14nm revision, it’s just the enthusiast TDP bracket that would stretch up to 125W. Intel would likely try to keep the boost clock as high as possible, but I don’t want to speculate on what that will be.

Catching AMD Wouldn’t Be the Goal

Anyone who has paid attention to relative standings between AMD and Intel has already realized that a 10-core Comet Lake isn’t going to match AMD in most performance areas. The 16-core Ryzen 9 3950X is on its way, and we’ve already seen what happens when a 10-core Intel HEDT CPU takes on a 16-core AMD Threadripper: The 10-core CPU loses. Mostly, it loses by a lot.

But while this might sound faintly absurd, beating AMD in absolute multi-core performance probably isn’t the goal here. Both companies are working towards their respective strengths: For AMD, that means emphasizing multi-core while working to improve single-core, where Intel still holds a narrow advantage in some games at 1080p. For Intel, that means attempting to improve single-core while competing more effectively in multi-core. Bumping up to 10 cores and raising base clock via TDP increase probably helps the company achieve that. It’s going to take more than +2 cores to put Intel seriously back in the multi-threading game, and the company knows that.

The rumors of a 10-core Comet Lake are strong enough and have been running around for long enough that I think they’re pretty solid. We suspect this generation will see the return of Hyper-Threading as well to boost Intel’s competitive standing against AMD at lower price brackets. Without any price information, we obviously can’t opine on how the two companies will stack up, but Intel has a history of introducing better price/performance ratios at major product launches. This suggests we’ll see the company adjust its core count/dollar strategy at the next major launch.

Now Read:




10 minutes mail – Also known by names like : 10minemail, 10minutemail, 10mins email, mail 10 minutes, 10 minute e-mail, 10min mail, 10minute email or 10 minute temporary email. 10 minute email address is a disposable temporary email that self-destructed after a 10 minutes. https://tempemail.co/– is most advanced throwaway email service that helps you avoid spam and stay safe. Try tempemail and you can view content, post comments or download something

Intel Unveils 6-Core 10th Gen Mobile CPUs, but Power Limits May Throttle Chips


This site may earn affiliate commissions from the links on this page. Terms of use.

Intel has announced yet another tranche of 10th Generation mobile chips, this time based on 14nm. This is the third Intel 10th Generation announcement that the company has made recently and the first to show us how 10nm and 14nm products will live side-by-side in the same product families. The headline news here is that Intel is bumping its maximum mobile CPU core count to 6C/12T in a 15W power envelope, up from 4C/8T. The 14nm CPUsSEEAMAZON_ET_135 See Amazon ET commerce in the 10th Generation family are Comet Lake, paired up with Ice Lake to fill out the field.

On paper, this shift should be an excellent move for Intel. When the company launched 8th Generation chips, it delivered a significant overall performance improvement. Our initial concerns that high-clocked dual-cores might prove to be better options than lower-clocked quads were groundless; the low base clocks on 8th Generation mobile parts didn’t prevent them from delivering excellent gains in comparison.

There’s good reason to think that’s not the case any longer. Here’s one of the official Intel slides predicting the performance improvements customers who buy a new, 10th Generation CPU like the Core i7-10710U (that’s the six-core variant) can expect:

These are significant gains for a single generation of product. Up to 16 percent better overall performance compared with Coffee Lake, 41 percent better productivity in Office 365, and the same battery life? Not bad. But let’s check the fine print.

Click to enlarge.

This is from Intel’s official disclaimers page. Each numbered entry — 1, 2, 3, — deals with one of the claims we’ve just shown you. I’ve highlighted the listed TDP for each CPU in each entry. Note that #1 and #2 — the two performance claims — deal with two very different system configurations. In both cases, the six-core Core i7-10710U has been configured to run at a 25W TDP, while the Core i7-8565U has been handicapped to a 15W TDP.

The third data point, however, does not show this configuration. Here, the two chips are both running in a 15W envelope. The problem here is that users typically don’t have access to an OEM or Intel-provided method of switching between operating modes. That’s a decision that the laptopSEEAMAZON_ET_135 See Amazon ET commerce manufacturer makes. You can sometimes use third-party utilities or the Intel Extreme Tuning utility to tweak CPU configurations, but you can’t just flip between 15W and 25W configurations. Whatever configuration your laptop manufacturer used is the configuration you are stuck with, and they don’t typically advertise this information.

Intel Didn’t Do This for the 8th Gen Launch

We compared backward against the 2017 8th Generation launch to see how Intel had handled messaging in that situation. There’s a similar slide for the 8th Gen family comparing backward against the 7th Gen family.

We see a similar (though significantly larger) improvement and a similar footnote. Where’s that take us?

Nowhere good. In 2017, when Intel compared performance between the Core i7-8550U and the Core i7-7500U, it didn’t need to futz with TDP values in order to make its performance figures align. The comparison was performed with 15W allocated for both CPUs.

There’s only one reason we can think of for Intel to do this: power consumption. While TDP ratings are not equivalent to total CPU power consumption and should not be read that way, giving a CPU more TDP headroom allows it to draw more power. When reviewers spent time with Ice Lake earlier this month, we specifically noted how giving a CPU more TDP headroom allows it to run faster, as shown below:

657642-intel-ice-lake-cpu-tests-pov-ray

We don’t know how much faster the Core i7-10710U is when running in a 25W TDP versus a 15W TDP. What matters is that Intel is misrepresenting the type of comparison it’s making on its 10th Generation launch slides. Comparing laptop performance in two different TDP ranges for your performance metrics, only to flip and compare what amounts to a fundamentally different machine configuration for battery life is disingenuous. The switch between 15W and 25W operating modes may not seem like a big deal, but that’s not a switch that an end-user can throw. When you buy one of these chips, you’ll be getting either the higher-performance 25W version or the lower-performing 15W flavor, and OEMs don’t typically communicate the ultra-fine points of their power management strategies or SKU selections.

The final reason to suspect that TDP is limiting CPU performance in this case? The gains aren’t large enough. Moving to a six-core CPU from a quad may not be as large an improvement as the jump from 2C/4T to 4C/8T, but it should still be worth 1.5x baseline improvement, and there are plenty of benchmarks that will show this type of gain — if the chip isn’t butting up against thermal limits already.

Meet the (Rest) of the 10th Generation 14nm Family

Intel is launching a full suite of U- and Y-class parts, as shown below:

10th-Gen-14nm

Outside of the Core i7-10710U, improvements are kind of difficult to come by. The Core i7-105100U is a 1.8GHz base, 4.9GHz single-core Turbo, 4.3GHz all-core boost. Intel didn’t disclose its all-core boost frequencies for chips like the Core i7-8665U, but that CPU is a 1.9GHz base / 4.8GHz boost CPU. The total number of EUs for graphics and the graphics frequency are identical between the two parts. The Core i7-10710U does support LPDDR4X-2933, LPDDR3-2133, or DDR4-2666, while the Core i7-8665U only supports DDR4-2400 or LPDDR3-2133, but these improvements are going to be of limited value to users. Intel CPUs aren’t very RAM bandwidth-bound.

ICL-vs-CML-Comparison

These chips will also carry the other 10th generation improvements Intel is shipping, like faster Wi-Fi and support for Intel’s Dynamic Tuning technology. They’ll collectively target the 7W envelope (Intel’s 10nm 10th Gen parts don’t fit into anything below 9W). They offer up to 4.9GHz of maximum frequency compared with 4.1GHz for 10nm Ice Lake CPUs. According to Intel, the U-series and Y-series are intended for customers that want top-notch CPU performance but care less about graphics on the whole. Outside of the single new 6-core SKU, all of the new chips are quad-core parts as well.

Our read on the situation is this: Intel is struggling to contain a resurgent AMD by doubling down on the one market where AMD has always been weakest: mobile. 10nm had to be in market by holidays 2020 for a host of reasons, but Intel isn’t manufacturing enough of the chips to just commit to a top-to-bottom 10nm refresh in that segment. So now we have a mix of 14nm and 10nm parts to address overall market needs, with the 10nm CPUs offering higher IPC and a dramatically improved graphics core, but significantly lower frequency. 14nm chips will theoretically anchor the product in-market with a “halo” six-core part.

But this time around, the situation is different. When Intel moved from 2C/4T to 4C/8T CPUs in mobile, it had held the line on 2C/4T configurations for multiple product cycles. Effectively, it had thermal headroom to spare. This time around, the company has telegraphed that its six-core 15W CPU is gasping for metaphorical air. We don’t know what the real improvements are between the Core i7-8565U and the Core i7-10710U, but we can bet they’re smaller than the 16 percent and 41 percent that Intel quoted. And if by some chance you do get a 25W laptop with a Core i7-10710U in it, it’s not going to offer commensurate battery life to that same configuration with a 15W CPU unless the OEM outfits it with a significantly heftier battery — which means you might get more cores and equivalent battery life, but you’ll pay for it with additional weight.

Now Read:




10 minutes mail – Also known by names like : 10minemail, 10minutemail, 10mins email, mail 10 minutes, 10 minute e-mail, 10min mail, 10minute email or 10 minute temporary email. 10 minute email address is a disposable temporary email that self-destructed after a 10 minutes. https://tempemail.co/– is most advanced throwaway email service that helps you avoid spam and stay safe. Try tempemail and you can view content, post comments or download something

Chinese Foundry SMIC Begins 14nm Production


This site may earn affiliate commissions from the links on this page. Terms of use.

One of the longstanding trends in semiconductor manufacturing has been a steady decrease in major foundry players. Twenty years ago, when 180nm manufacturing was cutting-edge technology, there were no fewer than 28 firms deploying the node. Today, there are three companies building 7nm technology — Samsung, TSMC, and Intel. A fourth, GlobalFoundries, has since quit the cutting-edge business to focus on specialty foundry technologies like its 22nm and 12nm FDX technology.

What sometimes gets lost in this discussion, however, is the existence of a secondary group of foundry companies that do deploy new nodes — just not at the cutting-edge of technological research. China’s Semiconductor Manufacturing International Corporation (SMIC) has announced that it will begin recognizing 14nm revenue from volume production by the end of 2019, a little more than five years after Intel began shipping on this node. TSMC, Samsung, and GlobalFoundries all have extensive 14nm capability in production, as does UMC, which introduced the node in 2017.

Secondary sources for a node, like UMC and SMIC, often aren’t captured in comparative manufacturing charts like the one below because the companies in question offer these nodes after they’ve been deployed as cutting-edge products by major foundries. In many cases, they’re tapped by smaller customers with products that don’t make news headlines.

FoundryManufacturing

SMIC, however, is something of a special case. SMIC is mainland China’s largest semiconductor manufacturer and builds chips ranging from 350nm to 14nm. The company has two factories with the ability to process 300mm wafers, but while moving to 14nm is a major part of China’s long-term semiconductor initiative, SMIC isn’t expected to have much 14nm capacity any time soon. The company’s high utilization rate (~94 percent) precludes it having much additional capacity to dedicate to 14nm production. SMIC is vital to China’s long-term manufacturing goals; the country’s “Made in China 2025” plan calls for 70 percent of its domestic semiconductor demand to come from local companies by 2025. Boosting production at SMIC and bringing new product lines online is vital to that goal. That distinguishes the company from a foundry like UMC, which has generally chosen not to compete with TSMC for leading-edge process nodes. SMIC wants that business — it just can’t compete for it yet.

Dr. Zhao Haijun and Dr. Liang Mong Song, SMIC’s Co-Chief Executive Officers released a statement on the company’s 14nm ramp, saying:

FinFET research and development continues to accelerate. Our 14nm is in risk production and is expected to contribute meaningful revenue by year-end. In addition, our second-generation FinFET N+1 has already begun customer engagement. We maintain long-term and steady cooperation with customers and clutch onto the opportunities emerging from 5G, IoT, automotive and other industry trends.

Currently, only 16 percent of the semiconductors used in China are built there, but the country is adding semiconductor production capacity faster than anywhere else on Earth. The company is investing in a $10B fab that will be used for dedicated 14nm production. SMIC is already installing equipment in the completed building, so production should ramp up in that facility in 2020. Once online, the company will have significantly more 14nm capacity at its disposal (major known customers of SMIC include HiSilicon and Qualcomm). Texas Instruments has built with the company in the past (it isn’t clear if it still does), as has Broadcom. TSMC and SMIC have gone through several rounds of litigation over IP misappropriation; both cases were settled out of court with substantial payments to TSMC.

Despite this spending, analysts do not expect SMIC to immediately catch up with major foundry players from other countries; analysts told CNBC it would take a decade for the firm to close the gap with other major players. Exact dimensions on SMIC’s 14nm node are unknown. Foundry nodes are defined by the individual company not by any overarching standard organization or in reference to any specific metric. Those looking for additional information on that topic will find it here.

Now Read: 




10 minutes mail – Also known by names like : 10minemail, 10minutemail, 10mins email, mail 10 minutes, 10 minute e-mail, 10min mail, 10minute email or 10 minute temporary email. 10 minute email address is a disposable temporary email that self-destructed after a 10 minutes. https://tempemail.co/– is most advanced throwaway email service that helps you avoid spam and stay safe. Try tempemail and you can view content, post comments or download something

Welcome to the Second Golden Age of AMD


On Wednesday, August 7, AMD launched the 7nm refresh of its Epyc CPU family. These new cores don’t just one-up Intel in a particular category, they deliver enormous improvements in every category. AMD has cut its per-core pricing, increased IPC, and promises to deliver far more CPU cores than an equivalent Intel socket.

There’s only been one other time that AMD came close to beating Intel so decisively — the introduction of dual-core Opteron and Athlon 64 X2 in 2005. Epyc’s launch this week feels bigger. In 2005, AMD’s dual cores matched Intel on core count, outperformed Intel clock-for-clock and core-for-core, and were quite expensive. This time, AMD is going for the trifecta, with higher performance, more cores, and lower per-core pricing. It’s the most serious assault on Intel’s high-end Xeon market that the company has ever launched.

Industry analysts have already predicted that AMD’s server market share could double within the next 12 months, hitting 10 percent by Q2 2020. Achieving larger share in the data center market is a critical goal for AMD. A higher share of the enterprise and data center market won’t just increase in AMD’s revenue, it’ll help stabilize the company’s financial performance. One of AMD’s critical weaknesses for the last two decades has been its reliance on low-end PCs and retail channel sales. Both of these markets tend to be sensitive to recessions. The low-end PC market also offers the least revenue per-socket and the smallest margins. Enterprise business cycles are less impacted by downturns. AMD briefly achieved its goal of substantial enterprise market share in 2005 – 2006, when its server market share broke 20 percent.

Enthusiasts like to focus on AMD’s desktop performance, but outside of gaming, overall PC sales are declining. Growth in narrow categories like 2-in-1’s has not been sufficient to offset the general sales decline. While no one expects the PC market to fail, it’s clear that the 2011 downturn was not a blip. It still makes sense for AMD to fight to expand its share of the desktop and mobile markets, but it makes even more sense to fight for a share of the server space, where revenue and unit shipments have both grown over the past 8 years. 2019 may be a down year for server sales but the larger trend towards moving workloads into the cloud shows no signs of slowing down.

Why Rome is a Threat to Intel

In our discussions of Rome, we’ve focused primarily on the Epyc 7742. This graph, from ServetheHome, shows Epyc versus Xeon performance across more SKUs. Take a look down the stack:

AMD-EPYC-7002-Linux-Kernel-Compile-Benchmark-Result

Data and graph by ServeTheHome

A pair of AMD Epyc 7742’s is $13,900. A brace of 7502’s (32C/64T, 2.5GHz base, 3.35GHz boost, $2600) is $5200. The Intel Xeon Platinum 8260 is a $4700 CPU, but there are four of them in the highest-scoring system, for a total cost of $18,800. $13,900 worth of AMD CPUs buys you ~1.19x more performance than $18,800 worth of Intel CPUs. The comparison doesn’t get better as we drop down the stack. Four E7-8890v4’s would run nearly $30,000 at list price. A pair of Platinum 8280s is $20,000. The 8676L is a $16,600 CPU at list price.

But it’s not just price, or even price/performance where AMD has an advantage. Intel heavily subdivides its product features and charges considerably more for them. Consider, for example, the price difference between the Xeon 8276, 8276M and Xeon Platinum 8276L. These three CPUs are identical, save for the maximum amount of RAM each supports. The pricing, however, is anything but.

Xeon-Comparison

Oh, you need 4.5TB of RAM? That’ll be an extra $8K.

In this case, “Maximum memory” includes Intel Optane. The 4.5TB RAM capability assumes 3TB of Optane installed alongside 1.5TB of RAM. For comparison, all 7nm Rome CPUs offer support for up to 4TB of RAM. It’s a standard, baked-in feature on all CPUs, and it simplifies product purchases and future planning. AMD isn’t just offering chips at lower prices, it’s taking a bat to Intel’s entire market segmentation method. Good luck justifying an $8000 price increase for additional RAM support when AMD is willing to sell you 4TB worth of addressable capacity at base price.

One of AMD’s talking points with Epyc is how it offers the benefits of a 2S system in a 1S configuration. This chart from ServetheHome lays out the differences nicely:

AMD-EPYC-7002-v-2nd-Gen-Intel-Xeon-Scalable-Top-Line-Comparison

Image by ServeTheHome

Part of AMD’s advantage here is that it can hit multiple Intel weaknesses simultaneously. Need lots of PCIe lanes? AMD is better. Want PCIe 4.0? AMD is better. If your workloads scale optimally with cores, no one is selling more cores per socket than AMD. Intel can still claim a few advantages — it offers much larger unified L3 caches than AMD (each individual AMD L3 cache is effectively 16MB, with a 4MB slice per core). But those advantages are going to be limited to specific applications that respond to them. Intel wants vendors to invest in building support for its Optane DC Persistent Memory, but it isn’t clear how many are doing so. The current rock-bottom prices for both NAND and DRAM have made it much harder for Optane to compete in-market.

The move to 7nm has given AMD an advantage in power consumption as well, particularly when you consider server retirements. STH reports single-threaded power consumption on a Xeon Platinum 8180 at ~430W (wall power), compared to ~340W of wall power for the AMD Epyc 7742 system. What they note, however, is that the high core count on AMD’s newest CPUs will allow them to retire between 6-8 sockets worth of 2017 Intel Xeons (60-80 cores) in order to consolidate the workloads into a single AMD Epyc system. The power savings from retiring 3-4 dual-socket servers is much larger than the ~90W difference between the two CPUs.

Features like DL Boost may give Intel a performance kick in AI and machine learning workloads, but the company is going to be fighting a decidedly uphill battle and thus far, the data we’ve seen suggests these factors can help Intel match AMD as opposed to beating it.

How Much Do Xeon’s Really Cost?

The list prices we’ve been quoting for this story are the formal prices that Intel publishes for Xeon CPUs in 1K units. They are also widely known to be inaccurate, at least as far as the major OEMs are concerned. We don’t know what Dell, HPE, and other vendors actually pay for Xeon CPUs, but we do know it’s often much less than list price, which is typically paid only by the retail channel.

The gap between Intel list prices and actual prices may explain why Threadripper hasn’t had much market penetration. Despite the fact that Threadripper CPUs have offered vastly more cores per $ and higher performance per dollar for two years now, the OEMs that share sales information, like MindFactory, report very low sales of both Threadripper and Skylake-X. Intel, however, has also shown no particular interest in slashing Core X prices. It continues to position a 10-core Core i9-9820X as appropriate competition for chips like the Threadripper 2950X, despite AMD’s superior performance in that match-up. This strongly implies that Intel is having no particular trouble selling 10-core CPUs to the OEM partners that want them, despite Threadripper’s superior price/performance ratio and that AMD’s share of the workstation market is quite limited.

While Intel has trimmed its HEDT prices (the 10-core Core i7-6950X was $1723 in 2016, compared to $900 for a Core i9-9820X today), it has never attempted to price/performance match against Threadripper. If that bulwark is going to crumble, Rome will be the CPU that does it. Ryzen and Threadripper will be viewed as more credible workstation CPUs if Epyc starts chewing into the server market.

Intel is Playing AMD’s Game Now

Intel can cut its prices to respond to AMD in the short-term. Long-term, it’s going to have to challenge AMD directly. That’s going to mean delivering more cores at lower prices, with higher amounts of memory supported per socket. Cooper Lake, which is built on 14nm and includes additional support for new AI-focused AVX-512 instructions, will arrive in the first half of next year. That chip will help Intel focus on some of the markets it wants to compete in, but it won’t change the core count differential between the two companies. Similarly, Intel may have trouble putting a $3000 – $7000 premium on support for 2TB – 4.5TB of RAM given that AMD is willing to support up to 4TB of memory on every CPU socket.

We don’t know yet if Intel will increase core counts with Ice Lake servers, or what sorts of designs it will bring to market, but ICL in servers is at least a year away. By the time ICL servers are ready to ship, AMD’s 7nm EUV designs may be ready as well. Having kicked off the mother of all refresh cycles with Rome, AMD’s challenge over the next 12 – 24 months will be demonstrating ongoing smooth update cadences and continued performance improvements. If it does, it has a genuine shot at building the kind of stable enterprise market it’s desired for decades.

Don’t Get Cocky

When AMD launched dual-core Opteron and its consumer equivalent, the Athlon 64 X2, there was a definite sense that the company had finally arrived. Just over a year later, Intel launched the Core 2 Duo. AMD spent the next 11 years wandering in the proverbial wilderness. Later, executives would admit that the company had taken its eye off the ball and become distracted with the ATI acquisition. A string of problems followed.

The simplistic assumption that the P4 Prescott was a disaster Intel couldn’t recover from proved incorrect. Historically, attacking Intel has often proven akin to hitting a rubber wall with a Sledgehammer (pun intended). Deforming the wall is comparatively easy. Destroying it altogether is a far more difficult task. AMD has perhaps the best opportunity to take market share in the enterprise that it has ever had with 7nm Epyc, but building server share is a slow and careful process, not a wind sprint. If AMD wants to keep what it’s building this time around, it needs to play its cards differently than it did in 2005 – 2006.

But with that said, I don’t use phrases like “golden age” lightly. I’m using it now. While I make no projections on how long it will last, 7nm Epyc’s debut has made it official, as far as I’m concerned: Welcome to the second golden age of AMD.

Now Read:




10 minutes mail – Also known by names like : 10minemail, 10minutemail, 10mins email, mail 10 minutes, 10 minute e-mail, 10min mail, 10minute email or 10 minute temporary email. 10 minute email address is a disposable temporary email that self-destructed after a 10 minutes. https://tempemail.co/– is most advanced throwaway email service that helps you avoid spam and stay safe. Try tempemail and you can view content, post comments or download something

Intel Announces Cooper Lake Will Be Socketed, Compatible With Future Ice Lake CPUs


This site may earn affiliate commissions from the links on this page. Terms of use.

Intel may have launched Cascade Lake relatively recently, but there’s another 14nm server refresh already on the horizon. Intel lifted the lid on Cooper Lake today, giving some new details on how the CPU fits into its product lineup with Ice Lake 10nm server chips already supposedly queuing up for 2020 deployment.

Cooper Lake’s features include support for the Google-developed bfloat16 format. It will also support up to 56 CPU cores in a socketed format, unlike Cascade Lake-AP, which scales up to 56 cores but only in a soldered, BGA configuration. The new socket will reportedly be known as LGA4189. There are reports that these chips could offer up to 16 memory channels (because Cascade Lake-AP and Cooper Lake both use multiple dies on the same chip, the implication is that Intel may launch up to 16 memory channels per socket with the dual-die version).

bfloat16-vs-float16

The bfloat16 support is a major addition to Intel’s AI efforts. While 16-bit half-precision floating point numbers have been defined in the IEEE 754 standard for over 30 years, bfloat16 changes the balance between how much of the format is used for significant digits and how much is devoted to exponents. The original IEEE 754 standard is designed to prioritize precision, with just five exponent bits. The new format allows for a much greater range of values but at lower precision. This is particularly valuable for AI and deep learning calculations, and is a major step on Intel’s path to improving the performance of AI and deep learning calculations on CPUs. Intel has published a whitepaper on bfloat16 if you’re looking for more information on the topic. Google claims that using bfloat16 instead of conventional half-precision floating point can yield significant performance advantages. The company writes: “Some operations are memory-bandwidth-bound, which means the memory bandwidth determines the time spent in such operations. Storing inputs and outputs of memory-bandwidth-bound operations in the bfloat16 format reduces the amount of data that must be transferred, thus improving the speed of the operations.”

The other advantage of Cooper Lake is that the CPU will reportedly share a socket with Ice Lake servers coming in 2020. One major theorized distinction between the two families is that Ice Lake servers on 10nm may not support bfloat16, while 14nm Cooper Lake servers will. This could be the result of increased differentiation in Intel’s product lines, though it’s also possible that it reflects 10nm’s troubled development.

Bringing 56 cores to market in a socketed form factor indicates Intel expects Cooper Lake to expand to more customers than Cascade Lake / Cascade Lake-AP targeted. It also raises questions about what kind of Ice Lake servers Intel will bring to market, and whether we’ll see 56-core versions of these chips as well. To-date, all of Intel’s messaging around 10nm Ice Lake has focused on servers or mobile. This may mirror the strategy Intel used for Broadwell, where the desktop versions of the CPU were few and far between, and the mobile and server parts dominated that family — but Intel also said later that not doing a Broadwell desktop release was a mistake and that the company had goofed by skipping the market. Whether that means Intel is keeping an Ice Lake desktop launch under its hat or if the company has decided skipping desktop again does make sense this time around is still unclear.

Cooper Lake’s focus on AI processing implies that it isn’t necessarily intended to go toe-to-toe with AMD’s upcoming 7nm Epyc. AMD hasn’t said much about AI or machine learning workloads on its processors, and while its 7nm chips add support for 256-bit AVX2 operations, we haven’t heard anything from the CPU division at the company to imply a specific focus on the AI market. AMD’s efforts in this space are still GPU-based, and while its CPUs will certainly run AI code, it doesn’t seem to be gunning for the market the way Intel has. Between adding new support for AI to existing Xeons, its Movidius and Nervana products, projects like Loihi, and plans for the data center market with Xe, Intel is trying to build a market for itself to protect its HPC and high-end server business — and to tackle Nvidia’s own current dominance of the space.

Now Read:




10 minutes mail – Also known by names like : 10minemail, 10minutemail, 10mins email, mail 10 minutes, 10 minute e-mail, 10min mail, 10minute email or 10 minute temporary email. 10 minute email address is a disposable temporary email that self-destructed after a 10 minutes. https://tempemail.co/– is most advanced throwaway email service that helps you avoid spam and stay safe. Try tempemail and you can view content, post comments or download something

How Are Process Nodes Defined?


This site may earn affiliate commissions from the links on this page. Terms of use.

We talk a lot about process nodes at ExtremeTech, but we don’t often refer back to what a process node technically is. With Intel’s 10nm node moving towards production, I’ve noticed an uptick in conversations around this issue and confusion about whether TSMC and Samsung possess a manufacturing advantage over Intel (and, if they do, how large an advantage they possess).

Process nodes are typically named with a number followed by the abbreviation for nanometer: 32nm, 22nm, 14nm, etc. There is no fixed, objective relationship between any feature of the CPUSEEAMAZON_ET_135 See Amazon ET commerce and the name of the node. This was not always the case. From roughly the 1960s through the end of the 1990s, nodes were named based on their gate lengths. This chart from IEEE shows the relationship:

lithot1

For a long time, gate length (the length of the transistor gate) and half-pitch (half the distance between two identical features on a chip) matched the process node name, but the last time this was true was 1997. The half-pitch continued to match the node name for several generations but is no longer related to it in any practical sense. In fact, it’s been a very long time since our geometric scaling of processor nodes actually matched with what the curve would look like if we’d been able to continue actually shrinking feature sizes.

2010-ITRS-Summary

Well below 1nm before 2015? Pleasant fantasy.

If we’d hit the geometric scaling requirements to keep node names and actual feature sizes synchronized, we’d have plunged below 1nm manufacturing six years ago. The numbers that we use to signify each new node are just numbers that companies pick. Back in 2010, the ITRS (more on them in a moment) referred to the technology chum bucket dumped in at every node as enabling “equivalent scaling.” As we approach the end of the nanometer scale, companies may begin referring to angstroms instead of nanometers, or we may simply start using decimal points. When I started work in this industry it was much more common to see journalists refer to process nodes in microns instead of nanometers — 0.18-micron or 0.13-micron, for example, instead of 180nm or 130nm.

How the Market Fragmented

Semiconductor manufacturing involves tremendous capital expenditure and a great deal of long-term research. The average length of time between when a new technological approach is introduced in a paper and when it hits widescale commercial manufacturing is on the order of 10-15 years. Decades ago, the semiconductor industry recognized that it would be to everyone’s advantage if a general roadmap existed for node introductions and the feature sizes those nodes would target. This would allow for the broad, simultaneous development of all the pieces of the puzzle required to bring a new node to market. For many years, the ITRS — the International Technology Roadmap for Semiconductors — published a general roadmap for the industry. These roadmaps stretched over 15 years and set general targets for the semiconductor market.

SemiconductorRoadmap

Image by Wikipedia

The ITRS was published from 1998-2015. From 2013-2014, the ITRS reorganized into the ITRS 2.0, but soon recognized that the scope of its mandate — namely, to provide “the main reference into the future for university, consortia, and industry researchers to stimulate innovation in various areas of technology” required the organization to drastically expand its reach and coverage. The ITRS was retired and a new organization was formed called IRDS — International Roadmap for Devices and Systems — with a much larger mandate, covering a wider set of technologies.

This shift in scope and focus mirrors what’s been happening across the foundry industry. The reason we stopped tying gate length or half-pitch to node size is that they either stopped scaling or began scaling much more slowly. As an alternative, companies have integrated various new technologies and manufacturing approaches to allow for continued node scaling. At 40/45nm, companies like GF and TSMC introduced immersion lithography. Double-patterning was introduced at 32nm. Gate-last manufacturing was a feature of 28nm. FinFETs were introduced by Intel at 22nm and the rest of the industry at the 14/16nm node.

Companies sometimes introduce features and capabilities at different times. AMD and TSMC introduced immersion lithography at 40/45nm, but Intel waited until 32nm to use that technique, opting to roll out double-patterning first. GlobalFoundries and TSMC began using double-patterning more at 32/28nm. TSMC used gate-last construction at 28nm, while Samsung and GF used gate-first technology. But as progress has gotten slower, we’ve seen companies lean more heavily on marketing, with a greater array of defined “nodes.” Instead of waterfalling over a fairly large numerical space (90, 65, 45) companies like Samsung are launching nodes that are right on top of each other, numerically speaking:

I think you can argue that this product strategy isn’t very clear, because there’s no way to tell which process nodes are evolved variants of earlier nodes unless you have the chart handy. But a lot of the explosion in node names is basically marketing.

Why Do People Claim Intel 7nm and TSMC/Samsung 10nm Are Equivalent?

While node names are not tied to any specific feature size, and some features have stopped scaling, semiconductor manufacturers are still finding ways to improve on key metrics. The chart below is drawn from WikiChip, but it combines the known feature sizes for Intel’s 10nm node with the known feature sizes for TSMC’s and Samsung’s 7nm node. As you can see, they’re very similar:

Intel-10-Foundry-7

Image by ET, compiled from data at WikiChip

The delta 14nm / delta 10nm column shows how much each company scaled a particular feature down from its previous node. Intel and Samsung have a tighter minimum metal pitch than TSMC does, but TSMC’s high-density SRAM cells are smaller than Intel’s, likely reflecting the needs of different customers at the Taiwanese foundry. Samsung’s cells, meanwhile, are even smaller than TSMC’s. Overall, however, Intel’s 10nm process hits many of the key metrics as what both TSMC and Samsung are calling 7nm.

Individual chips may still have features that depart from these sizes due to particular design goals. The information manufacturers provide on these numbers are for a typical expected implementation on a given node, not necessarily an exact match for any specific chip.

There have been questions about how closely Intel’s 10nm+ process (used for Ice Lake) reflects these figures (which I believe were published for Cannon Lake). It’s true that the expect specifications for Intel’s 10nm node may have changed slightly, but 14nm+ was an adjustment from 14nm as well. Intel has stated that it is still targeting a 2.7x scaling factor for 10nm relative to 14nm, so we’ll hold off on any speculation about how 10nm+ may be slightly different.

Pulling It All Together

The best way to understand the meaning of a new process node is to think of it as an umbrella term. When a foundry talks about rolling out a new process node, what they are saying boils down to this:

“We have created a new manufacturing process with smaller features and tighter tolerances. In order to achieve this goal, we have integrated new manufacturing technologies. We refer to this set of new manufacturing technologies as a process node because we want an umbrella term that allows us to capture the idea of progress and improved capability.”

Any additional questions on the topic? Drop them below and I’ll answer them.

Now Read: 




10 minutes mail – Also known by names like : 10minemail, 10minutemail, 10mins email, mail 10 minutes, 10 minute e-mail, 10min mail, 10minute email or 10 minute temporary email. 10 minute email address is a disposable temporary email that self-destructed after a 10 minutes. https://tempemail.co/– is most advanced throwaway email service that helps you avoid spam and stay safe. Try tempemail and you can view content, post comments or download something

Ice Lake Benchmarks Paint a Complex Picture for Intel’s Latest CPU


This site may earn affiliate commissions from the links on this page. Terms of use.

Intel dropped a lot of Ice Lake news today, including an embargo lift on performance data concerning the new CPU. ExtremeTech was not aware that Intel had held a testing event in which reporters from various sites were invited to benchmark Ice Lake under controlled conditions and did not include this data in our initial coverage earlier today. We have reached out to Intel to clarify the situation, given that we were on hand at Architecture Day last winter to report on the initial Ice Lake CPU architecture and have covered Intel’s foundry research and developments for the past eight years.

Now that we actually know what CPU performance factually looks like, we’ve got a much better basis for discussing it relative to Intel’s Whiskey Lake. Our sister site PCMag has done a thorough comparison of Ice Lake against Whiskey Lake, with the Core i7-8565U represented in multiple form factors and systems from different OEMs. That’s actually incredibly useful because it shows just how large the gap between laptops can be, and how important proper testing (and thermals) are.

We’re going to excerpt benchmarks from the PCMag article and highly recommend you read the full story for that publication’s in-depth analysis. Let’s start with Cinebench R15:

657639-intel-ice-lake-cpu-tests-cinebench-r15

Right off the bat, we can see that Ice Lake has some issues in a 15W envelope. The fact that the CPU’s single-threaded performance improves by 1.22x when given room to breathe in a 25W design is evidence that CPU power consumption is throttling the core badly. There’s only a 5 percent spread between the Core i7-8565U machines as far as single-thread is concerned. When we move to multi-threading, giving the CPU 1.66x more thermal headroom results in a 1.33x improvement in performance. Comparing 15W with 15W, the older Intel CPUs are all faster, particularly the HP Envy 13.SEEAMAZON_ET_135 See Amazon ET commerce

In the 25W configuration, ICL wins the benchmark overall but is only 5 percent faster than the HP Envy 13. The Ryzen 5 2500U is outperformed (PCMag did not have a Ryzen 7 to compare against or an updated 3000-series APU in a mobile system).

POV-RAY shows some very interesting performance figures, in part because they’re completely different from the Handbrake distribution. The HP Envy 13, which was the fastest Core i7-8565U in Cinebench R15, is the slowest system in Handbrake (apart from the Pentium Gold, which doesn’t really count for our purposes). The Zenbook 13 is a whopping 20 percent faster than the 15W ICL testbed, though that system’s performance is on par with the Spectre X360 and Envy 13. Giving the CPU 25W to play with instead of 15W improves performance by about 24 percent, allowing ICL to beat past its rivals.

There are other results for the CPU-side available at PCMag and I’d look at them for a more complete picture. What we see in aggregate is that a 15W power envelope is a tight fit for the 10th Gen CPU family. Sometimes ICL is a bit faster than the 14nm Whiskey Lake CPUs, sometimes it’s slower, but we don’t see much evidence of improvement in the lower power envelope.

At the same time, however, we also see substantial variation in 14nm Core i7-8565U results. This isn’t surprising; Intel started giving OEMs more freedom to design SKUs back when Core M debuted, but all systems are not created equal. Certain laptops may be noticeably faster than others in certain circumstances. We recently talked about how increased variation in silicon performance explains many of AMD’s decisions around 7nm and the company’s Ryzen 7 products. This is a variation of a decidedly different sort, but that’s actually the point. Silicon companies have begun to design around variance in many ways because simply annihilating it has proven either prohibitively expensive or downright impossible.

That addresses the CPU component of Ice Lake. What about the GPU? Here, the news is much more positive.

In Rise of the Tomb Raider Low, ICL can maintain 40fps at 1366×768 and 26fps at 1920×1080. Interestingly, giving the system more headroom for power took the score down, not up at 768p and held it constant in 1080p. AMD’s lower-end Vega 8 does not compete well here, and while Vega 11 would provide some additional GPU headroom, it’s unlikely to completely close the gap. Only the MX150 and MX250-equipped laptops, with Nvidia GPUs,SEEAMAZON_ET_135 See Amazon ET commerce beat out Intel’s integrated graphics.

Tom Clancy’s Rainbow Six: Siege is impressive, with equal performance between the 15W and 25W CPUs. Again, only the MX150 and MX250 exceed Intel’s integrated performance. AMD’s Vega 8 turns in playable performance at 1366×768 but doesn’t meet the minimum 30fps threshold we consider minimum for 1080p gaming.

All of the GPU figures basically follow this pattern. You’ll see AMD hold its ground better in some than others, but Intel is ahead on the whole. Vega 11 would improve these results, but likely not by enough to change the outcome in most games.

Implications and Conclusion

In our earlier coverage written today, I implied that one reason for Intel’s lower CPU clocks might be because Intel used a larger amount of TDP to provide GPU performance. While there’s probably some truth to this, the 15W-25W performance pattern is different for CPUs compared with GPUs. Moving from 15W to 25W almost always improves CPU performance. Moving from 15W to 25W improves synthetic GPU benchmark performance on ICL, but has a weaker impact on actual games. Only World of Tanks enCore appears to respond strongly to the additional TDP headroom, suggesting that in most cases, that additional wattage isn’t going to the GPU — it’s being used to accelerate the CPU.

Gains for Ice Lake relative to Whiskey Lake are fairly anemic, though this can vary dramatically depending on which Whiskey Lake system you own now. When there’s a 10-15 percent variance between different systems equipped with the same processor, that’s obviously going to impact how ICL compares. Overall, we’d say Ice Lake is comparable to Whiskey Lake — sometimes faster, sometimes slower, but rarely dramatically distinguishing itself one way or the other.

The GPU improvements, on the other hand, are enormous. Assuming that the Ryzen 7 3700U and 3500USEEAMAZON_ET_135 See Amazon ET commerce are a relatively modest improvement on their predecessors, AMD will need to have 7nm APUs in-market to take ICL on. We have no timeline on when that may happen. Of course, AMD is currently focused on the desktop and server spaces, which means we don’t even know when Intel’s 10nm silicon will face off against AMD’s 7nm in-market.

The third pillar is power consumption and battery life, and we don’t know yet how ICL compares on these metrics; Intel forbid testing the sample laptop for such things. Right now, Ice Lake delivers massive improvements in one area, settles for small gains to small losses in another, and offers an unknown level of improvement in the third. Gamers who want some ability to play on thin-and-lights should be the major beneficiaries of the improvements we’ve seen thus far. If this performance holds, AMD will either need to hit back at Intel on 7nm or see its long domination of the integrated mobile GPU market finally fall — which isn’t honestly a sentence I used to think I’d ever type.

Now Read:




10 minutes mail – Also known by names like : 10minemail, 10minutemail, 10mins email, mail 10 minutes, 10 minute e-mail, 10min mail, 10minute email or 10 minute temporary email. 10 minute email address is a disposable temporary email that self-destructed after a 10 minutes. https://tempemail.co/– is most advanced throwaway email service that helps you avoid spam and stay safe. Try tempemail and you can view content, post comments or download something